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a b s t r a c t

The use of achievement (scalarizing) functions in interactive multiobjective optimization methods is

very popular, as indicated by the large number of algorithmic and applied scientific papers that use this

approach. Key parameters in this approach are the reference point, which expresses desirable objective

function values for the decision maker, and weights. The role of the weights can range from purely

normalizing to fully preferential parameters that indicate the relative importance given by the decision

maker to the achievement of each reference value. Technically, the influence of the weights in the

solution generated by the achievement scalarizing function is different, depending on whether the

reference point is achievable or not. Besides, from a psychological point of view, decision makers also

react in a different way, depending on the achievability of the reference point. For this reason, in this

work, we introduce the formulation of a new achievement scalarizing function with two different

weight vectors, one for achievable reference points, and the other one for unachievable reference

points. The new achievement scalarizing function is designed so that an appropriate weight vector is

used in each case, without having to carry out any a priori achievability test. It allows us to reflect the

decision maker’s preferences in a better way as a part of an interactive solution method, and this can

cause a quicker convergence of the method. The computational efficiency of this new formulation is

shown in several test examples using different reference points.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many real life problems involve dealing with several criteria,
which must be maximized or minimized simultaneously. Such
problems are called multiobjective optimization problems when
both the criteria and the constraints that determine the feasible
set of alternatives can be mathematically expressed by functions.
Because the criteria, also known as objective functions, typically
are conflicting, it is impossible to find a solution where all the
objectives can reach their individual optima simultaneously.
Instead, we can identify compromise solutions, that is, so-called
Pareto optimal or nondominated points, where none of the
objectives can get a better value without deteriorating at least
one of the other objectives.

Many methods have been developed for solving multiobjective
optimization problems during the years. They can be classified in
three classes according to the role of the decision maker (DM) in
the solution process (see, e.g., [6,11]). In the so-called a posteriori

methods a representation of nondominated points is first gener-
ated and displayed to the DM who then is supposed to select the
best of them as the final solution. The difficulty here is that it may
be cognitively difficult for the DM to analyze all the provided
solutions. Alternatively, the DM can specify desires and hopes
before the solution process in the so-called a priori methods. The
drawback here is that it may be difficult for the DM to set
expectations on a realistic level before getting to know the
problem. Finally, the third group comprises of interactive methods.
The idea behind these algorithms is the gradual incorporation of
the DM’s preferences during the interactive and iterative solution
process.

Interactive multiobjective optimization methods have been
widely studied and used in real applications (see, e.g., [11,16] and
references therein). In them, a solution pattern is formulated and
repeated iteratively, and the DM takes actively part in the
solution process by specifying and refining his/her preference
information. There are many interactive methods and basically
they differ from each other in what kind of information is asked
for and shown to the DM at each iteration, as well as in the way
the solutions are calculated. Examples of different types of
preference information asked from the DM include marginal rates
of substitution, surrogate values for trade-offs, classification of
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objective functions and reference points. For further details, see
[5,6,10,11,23] and references therein.

One of the ways to generate nondominated points in interactive
methods is the use of an achievement scalarizing function. The
popularity of the achievement scalarizing functions [24] in the
framework of interactive methods is unquestionable. It is normally
used within two different ways of specifying preference information.
In reference point-based approaches (see [2,7,8,18,25]), the DM gives
a reference value to each objective (these values constitute a so-called
reference point), while in classification-based approaches (see [1,14]),
the DM classifies the objectives into different categories (objectives to
be improved, objectives than can be worsened, etc.). However,
methods based on classification are closely related to reference
point-based methods because a reference point can be formed once
a classification has been made [14]. Once a reference point is given,
the achievement scalarizing function is optimized to find the non-
dominated point that is, in some sense, closest to the reference point.
For an overview of achievement scalarizing functions, see [13].

Regarding the interactive reference point-based methods, the
main difference between them is the form of the weighting
coefficients used in the achievement scalarizing function. In
[12,13,21], wide studies of the performance of some of these
methods (including classification based procedures), and of dif-
ferent weights, are presented and the following conclusion is
reached: solutions obtained using different reference point-based
methods (or classification-based ones) are, in fact, different. As a
consequence, a synchronous approach is proposed in [14] where
some of these solutions are calculated at each iteration and
shown to the DM, who chooses the most preferred one according
to his/her preferences.

Although different achievement scalarizing functions have been
developed (for example, an additive achievement scalarizing func-
tion in [22]), the most widely used ones so far are extensions of the
L1-distance (Chebychev distance). When the reference point is
unachievable, these achievement scalarizing functions minimize
the L1-distance between the reference point and the feasible set.
In other words, the maximum (unwanted) deviation between the
coordinates of the reference point and the feasible set is minimized.
On the other hand, when the reference point is achievable, these
achievement scalarizing functions minimize the maximum value of
the negative differences between the coordinates of the reference
point and the nondominated set, which is equivalent to maximizing
the minimum deviation between the coordinates of the reference
point and the feasible set in the objective space.

Several studies support the idea that it is better to use different
vectors of weights, depending on the reference point given by the
DM. In [21], it is shown that the effect of the weights on the
relations between the reference values and the corresponding
components of the optimal solution are completely different
depending on whether the reference point is achievable or not.
Furthermore, in [3] some reference point-based methods are
compared, and experiments with real DMs are carried out to
determine which solutions they prefer. In fact, solutions obtained
by two different methods are compared: STOM [18] (Satisfying
Trade-Off Method), where the reference point is projected onto
the nondominated objective set, in the direction joining the ideal
point with the reference point, and GUESS [2] (a naı̈ve approach)
where the reference point is projected onto the nondominated
objective set, in the direction joining the nadir vector with the
reference point. The conclusion is that if the reference point is
achievable, a higher percentage of DMs (55.2%) prefers the STOM

solution rather than the GUESS solution, while if the reference
point is unachievable, a higher percentage of DMs (61%) prefers
the GUESS solution instead of the STOM solution.

Different methods use different vectors of weights, which are
hardly ever controlled by the DM in any way. But studies reflect

that, when the reference point is achievable, the DMs tend to
prefer the solutions obtained with certain weights, while when
the reference point is unachievable, they often prefer others. On
the other hand, the DM does not necessarily know in advance
whether the reference point (s)he gives is achievable or not.
Therefore, in this paper we suggest an achievement scalarizing
function which automatically chooses a vector of weights for
achievable reference points, and a different one for unachievable
reference points.

Another possible application of an achievement scalarizing func-
tion which automatically adjusts itself according to the achievability
of reference points can be found in [9], where it is shown that the use
of preferential weights in achievement scalarizing functions allows us
to obtain solutions that are more satisfactory to the DM, and speeds
up the convergence of the algorithm. Several alternatives are provided
for considering such preferential weights. In one of them, it is
necessary to determine whether the reference point is achievable or
not, because different weights are used in each case. This implies to
first solve a subproblem in order to check the achievability of the
reference point before the actual achievement scalarizing function
can be solved.

As said, in this paper, we propose a new achievement scalarizing
function with two different weight vectors: one is automatically used
for unachievable reference points and the other one for achievable
reference points. The advantage of this function is that we do not
need to test whether the reference point is achievable or not before
optimizing the achievement scalarizing function. Instead, the optimi-
zation process itself guarantees that the appropriate weight vector
will be used in each case. This means that, for example, the previously
mentioned preferential weights problem, proposed in [9], can be
solved in a single problem, or following [3], we can consider the
STOM weights for achievable reference points and the GUESS weights
for unachievable reference points, again solving only a single problem
per iteration of the interactive method.

To the authors’ knowledge, an achievement scalarizing function
corresponding to the one proposed here cannot be found in the
literature. The most closely related function is described in [26],
where an achievement scalarizing function with three different
vectors of weights is proposed for a double reference point approach
(involving both desirable and acceptable reference values, that is,
aspiration and reservation levels, respectively). This function is
defined in a branch-wise fashion, so that different weights are used
depending on the relative position of the objective vector with
respect to the reservation and the aspiration levels. Nevertheless, in
this case the achievability of the reference point is not the issue
(both the reservation and the aspiration levels can be achievable or
not, without altering the corresponding weights), and the function
defined implies an if–then formulation every time the achievement
scalarizing function is evaluated.

The remainder of this paper is organized as follows. In Section 2,
we introduce the main concepts and notations used. The new
achievement scalarizing function is defined in Section 3, demon-
strating the efficiency of the solutions obtained, and that an
appropriate vector of weights is used in each case. In Section 4,
the case of differentiable problems is analyzed. Some computational
tests show the performance of our new achievement scalarizing
function for both differentiable and nondifferentiable cases in
Section 5 and finally, some conclusions are drawn in Section 6.

2. Formulation and background concepts

We consider multiobjective optimization problems of the form

minimize ff 1ðxÞ,f 2ðxÞ, . . . ,f kðxÞg

subject to xAS ð1Þ
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