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a b s t r a c t

We consider the nonlinear knapsack problem with separable nonconvex functions. Depending on the

assumption on the integrality of the variables, this problem can be modeled as a nonlinear

programming or as a (mixed) integer nonlinear programming problem. In both cases, this class of

problems is very difficult to solve, both from a theoretical and a practical viewpoint. We propose a fast

heuristic algorithm, and a local search post-optimization procedure. A series of computational

comparisons with a heuristic method for general nonconvex mixed integer nonlinear programming and

with global optimization methods shows that the proposed algorithms provide high-quality solutions

within very short computing times.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The general nonlinear knapsack problem is

max f ðxÞ ð1Þ

gðxÞrc ð2Þ

xAD ð3Þ

where x¼ ðx1; . . . ; xnÞARn, f(x) and g(x) are continuous differenti-
able functions, c is a nonnegative value, and DDRn. In this paper
we consider the case where both f(x) and g(x) are separable
functions, and D includes bounds and integrality requirements on
(part of) the variables. The resulting problem can thus be
described, using the knapsack terminology, as follows. Given n

items j, each having a profit function fj(xj) and a weight function
gj(xj), associated with n variables xj limited by upper bounds uj

ðjAN¼ f1, . . . ,ngÞ, determine nonnegative xj values such that the
total weight does not exceed a given capacity c and the total
produced profit is a maximum. A subset N of the xj variables can
be restricted to take integer values. Formally, we consider the
nonlinear knapsack (NLK) problem

max
X

jAN

fjðxjÞ ð4Þ

X

jAN

gjðxjÞrc ð5Þ

0rxjruj 8jAN¼ f1, . . . ,ng ð6Þ

xj integer 8jAN DN ð7Þ

where, as it is common in the knapsack literature, fj(xj) and gj(xj)
are nonlinear nonnegative nondecreasing functions and the
unique constraint is the capacity constraint (5). We have no
further assumption on functions fj(xj) and gj(xj), i.e., they can be
nonconvex and nonconcave. Cases in which lower bounds lj
(different from zero) on the variable values are also given can be
handled by replacing, for jAN, xj with yj+ lj, so (6) takes the form
0ryjruj�lj.

These problems classically arise, e.g., in resource-allocation
contexts, where a limited resource of amount c (such as an
advertising budget) has to be partitioned for different categories
jAN (such as advertisements for different products). The objective
function is the overall expected return, in terms of sales, from all
categories. The nonconvexity arises because the return sharply
increases with the amount of allocation when the advertisements
are noticed by an increasing number of consumers which are more
and more motivated to buy it. On the other hand, at some point,
saturation occurs, and an increase of advertisement no longer leads
to a significant increase in sales. The situation is depicted in Fig. 1.
If xj denotes the amount of advertisement allocated to category j

ðjANÞ, fj(xj) the expected return in terms of sales of category j, and
gj(xj)¼xj the corresponding cost for advertising, the resulting
optimization problem is then modeled by NLK.

The well-known (linear) knapsack problem (see [10,9]) is the
special case of NLK arising when fj(xj) and gj(xj) are linear integer
functions, i.e., fj(xj)¼pjxj and gj(xj)¼wjxj 8jAN and N ¼N. It
follows that NLK is NP�hard.

Nonlinear knapsack problems have many applications in
various fields such as, e.g., portfolio selection, stratified sampling,
production planning, resource distribution. We refer the reader to
the book by Ibaraki and Katoh [6] and to the survey by Bretthauer
and Shetty [2] for extensive reviews.
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A number of nonlinear separable knapsack problems has been
considered in the literature. In most cases the proposed algorithms
are specifically tailored to the case of convex or concave functions
(see, e.g., the recent article by Zhang and Hua [12], who consider a
minimization case in which both the fj(xj) and the gj(xj) functions are
convex). In our model neither convexity nor concavity is assumed, a
situation rarely treated in the literature (apart from contributions on
the general global optimization, see Horst and Tuy [5]).

A special case, in which N ¼N and the xj variables can only take a
limited set of prefixed feasible values, was considered by Ohtagaki
et al. [11], who developed dominance criteria aimed at reducing the
number of feasible values, and a specifically tailored greedy
algorithm that recursively allocates capacity units to nondominated
items and updates the set of dominated items. Another special case,
in which N ¼N, the fj(xj) functions are piecewise linear and the gj(xj)
functions are linear, was recently considered by Kameshwaran and
Narahari [8], who developed polynomial and pseudo-polynomial
time approximation algorithms.

In Section 2 we present a constructive heuristic algorithm for
NLK based on a discretization of the solution space. In Section 3 we
describe post-processing improvement heuristics based on local
search procedures that operate on pairs of variables. The resulting
approach is experimentally compared with open source nonlinear
programming solvers [1,7] which provide heuristic solutions to
nonconvex problems. The quality of the solutions is experimentally
evaluated by comparison with the upper bounds produced by
general global optimization solvers (Couenne [3] and SC-MINLP,
developed by D’Ambrosio et al. [4]). The computational results,
reported in Section 4, show that the proposed approach provides
high-quality solutions within very small CPU times comparing to
the other solvers used for the comparisons, even for large-size
instances of the problem. Conclusions follow in Section 5.

2. Constructive heuristic

Before giving a detailed statement of the heuristic, we describe
its main steps. The algorithm starts by computing profit and
weight values over a discretized solution space. Let s denote the
number of samplings (identical for all functions), so dj ¼ uj=s is
the sampling step, and define

fjk ¼ fjðkdjÞ and gjk ¼ gjðkdjÞ ðjAN; k¼ 1, . . . ,sÞ: ð8Þ

We then obtain the profit-to-weight ratios as

rjk ¼
fjk

gjk
ðjAN; k¼ 1, . . . ,sÞ ð9Þ

and we can compute, for each item j, the maximum ratio

rj,mðjÞ ¼ max
k ¼ 1,...,s

frjkg: ð10Þ

Assume by simplicity that the items are sorted according to
nonincreasing rj,m(j) values, so, with respect to the current sampling
step, r1,m(1) is the best available ratio and mð1Þd1 is the value of
variable x1 that produces the best filling of the first g1,m(1) capacity
units. Consider now the second best item 2, and its best ratio r2,m(2)

ðrr1,mð1ÞÞ, and observe that item 1 could have a better ratio than
item 2 also for a higher x1 value. Specifically, we can find the highest
muð1Þ value (with muð1ÞAfmð1Þ, . . . ,sg) such that r1,muð1ÞZr2,mð2Þ.

The idea is then to define x1 ¼muð1Þd1, i.e., to use item 1 for the
first g1,muð1Þ capacity units, then to continue with the residual
capacity c ¼ c�g1,muð1Þ. At the second iteration, item 2 (second best
available ratio) is used for the next g2,muð2Þ capacity units, where
muð2Þ is analogously defined as the highest value such that
r2,muð2ÞZr3,mð3Þ, and so on.

The method is further improved by refining the search for the
best value muðjÞ of the current xj as follows. Once muðjÞ has been
computed, the sampling step is decreased, say, to dj ¼ dj=s (where
s is a prefixed refinement parameter), and new profit-to-weight
ratios of item j are computed, for xj ¼muðjÞdjþd js ðs¼ 1,2, . . . ,sÞ,
and compared with rj + 1,m(j +1), to obtain a more precise xj value.
Such refining process can be iterated by further decreasing the
sampling step.

Note that, whenever an xj is defined, the ratios rl,m(l) of the
unscanned items need to be updated, if the resulting residual
capacity is insufficient for their best ratio, i.e., if gl,mðlÞ4c . In such
a case the first and second best available ratios can change. In
addition, by assuming that the current best ratios correspond to
items j and j+1, when looking for the muðjÞ value, the residual
capacity has to be taken into account, i.e., muðjÞmust be defined as
the highest value such that rj,muðjÞZrjþ1,mðjþ1Þ and gj,muðjÞrc .

The algorithm performs a final step when one of the two cases
occurs:

1. all items but one have been assigned an xj value: in this case all
the residual capacity is used for the last item, i.e., we find the
largest feasible xn such that gn(xn) does not exceed the residual
capacity;

2. the residual capacity is insufficient for allocating the minimum
sampled weight of any unscanned item, i.e., cogj1 for each
unscanned j: in this case the best between two options is
adopted, namely (let j be the last scanned item):
(a) the whole residual capacity is used for the first unscanned

item, i.e., we find the largest feasible xj + 1 such that
gj + 1(xj + 1) does not exceed the residual capacity;

(b) xj is increased as much as possible, i.e., we find the largest
feasible xj such that gj(xj) does not exceed the residual
capacity. If some capacity still remains, this is used for the
first unscanned item, i.e., we find the largest feasible xj+1 such
that gj+1(xj+1) does not exceed the new residual capacity.

In all cases above, some residual capacity can remain, if the
updating is limited by the upper bounds. In this case a simple
greedy search scans the items of N in any order, and, for each item
j, increases the value of xj as much as possible.

Note that, to satisfy the integrality requirements for items in N ,
it is sufficient to only consider integer valued sampling steps dj for
all jAN .

The detailed statement of the method is given in Algorithm 1.
As already observed, whenever a new xj is defined, the ratios rl,m(l)

of the unscanned items need in general to be updated and re-
sorted. For this reason, in order to achieve a better efficiency, the
items are not actually sorted at each iteration, but only the two
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Fig. 1. Example of profit function.

C. D’Ambrosio, S. Martello / Computers & Operations Research 38 (2011) 505–513506



Download	English	Version:

https://daneshyari.com/en/article/10348342

Download	Persian	Version:

https://daneshyari.com/article/10348342

Daneshyari.com

https://daneshyari.com/en/article/10348342
https://daneshyari.com/article/10348342
https://daneshyari.com/

