Available online at www.sciencedirect.com

science @hoinzer:

The Journal of Systems and Software 79 (2006) 1001-1014

» The Journal of
Systems and
Software

ELSEVIER

www.elsevier.com/locate/jss

Results from introducing component-level test automation
and Test-Driven Development

Lars-Ola Damm *®* Lars Lundberg °

2 Ericsson AB, Olandsgalan 1, Box 518, SE-371 23, Karlskrona, Sweden
b School of Engineering, Blekinge Institute of Technology, Box 520, SE-372 25 Ronneby, Sweden

Received 10 September 2004; received in revised form 24 October 2005; accepted 24 October 2005
Available online 5 December 2005

Abstract

For many software development organizations it is of crucial importance to reduce development costs while still maintaining high
product quality. Since testing commonly constitutes a significant part of the development time, one way to increase efficiency is to find
more faults early when they are cheaper to pinpoint and remove. This paper presents empirical results from introducing a concept for
early fault detection. That is, an alternative approach to Test-Driven Development which was applied on a component level instead of on
a class/method level. The selected method for evaluating the result of introducing the concept was based on an existing method for fault-
based process assessment and was proven practically useful for evaluating fault reducing improvements. The evaluation was made on two
industrial projects and on different features within a project that only implemented the concept partly. The evaluation result demon-
strated improvements regarding decreased fault rates and Return On Investment (ROI), e.g. the total project cost became about 5-

6% less already in the first two studied projects.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Component testing; Test-Driven Development; Fault metrics; Software process improvement

1. Introduction

Avoidable rework is commonly a large part of a devel-
opment project, i.e. 20-80% depending on the maturity of
the organization (Shull et al., 2002). Having many faults
left to correct late in a project leads to higher verification
costs. That is, several studies demonstrate that faults are
cheaper to find and remove in early stages of projects
(Boehm, 1981; Shull et al., 2002). Further, having fewer
faults leads to improved delivery precision since software
processes become more reliable when most faults are
removed early (Tanaka et al., 1995).

* Corresponding author. Address: School of Engineering, Blekinge
Institute of Technology, Box 520, SE-372 25 Ronneby, Sweden. Tel.: +46
455 395561; fax: +46 455 815 10.

E-mail addresses: lars-ola.damm(@ericsson.com, lars-ola.damm(@)
bth.se (L.-O. Damm), lars.lundberg@bth.se (L. Lundberg).

0164-1212/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/.jss.2005.10.015

This paper presents the result of the implementation of a
concept for achieving early fault detection in two commer-
cial development projects at a software development
department at Ericsson AB. In order to achieve this, the
department wanted to develop a framework for automated
component testing. A previous publication proposed such a
framework based on component-level test automation
where the test cases are written before the code. That is,
an alternative approach to Test-Driven Development
(TDD) (Beck, 2003). The purpose of this paper is to pro-
vide results from implementing the proposed concept in
two commercial projects. Thereby, the primary research
question is as follows:

What are the costs and benefits of introducing a frame-
work for component-level test automation and Test-Driven
Development (TDD) in an industrial setting?

When implementing such changes in an industrial set-
ting, it is not as easy to evaluate the result as for controlled
research experiments. That is, in commercial projects, it is


mailto:lars-ola.damm@ericsson.com
mailto:lars-ola.damm@ bth.se
mailto:lars-ola.damm@ bth.se
mailto:lars.lundberg@bth.se

1002 L.-O. Damm, L. Lundberg | The Journal of Systems and Software 79 (2006) 1001-1014

likely that several other variables than those that were part
of the planned change are affected, e.g. new project mem-
bers and increased organizational maturity. Further, many
Software Process Improvement (SPI) frameworks such as
CMM and ISO 9000 advocate implementing many
improvements at the same time (Conradi and Fuggetta,
2002). Therefore, it is for example hard to relate cost and
lead-time changes to certain improvement actions.

However, since the primary output of testing is found
faults, a possible approach to such an evaluation is to look
at differences in fault distributions. However, in order for
such an approach to be useful, the following two criteria
should be met:

1. The approach should be able to quantify the obtained
benefits of the improvement; just classifying faults into
categories is not enough. Preferably, the Return On
Investment (ROI) should be possible to obtain.

2. Since several differences between projects might affect
the fault distributions, the approach should be able to
relate differences in fault distributions to a certain
change.

Classification of faults from their causes, e.g. root cause
analysis is a very common approach to fault classification
(Leszak et al., 2000). However, neither root cause analysis,
nor other fault classification approaches such as ODC trig-
gers (Chillarege et al., 1992) are applicable in this context
since they are not feasible for cost benefit analysis. Further,
there are techniques such as ‘Six Sigma’ (Biehl, 2004) that
evaluate quality improvements by measuring differences
in fault distributions in relation to product size or fault
detection phase. However, these techniques cannot relate
differences in fault distributions to a certain change, and
are as further described in Section 2.2 not suitable for eval-
uating the efficiency of the verification process.

Another possibility is to measure the number of faults
that should have been found in an earlier phase, i.e.
‘faults-slip-through’ (FST) (Damm et al., 2004). Although
this method was originally intended for process assessment,
it could also be used for quantifying the benefits of an
improvement that should result in finding more faults
early. That is, the method also measures the Avoidable
Fault Cost (AFC) in the assessed projects by multiplying
the number of FST with the average fault costs in different
test phases (Damm et al., 2004). The method can also com-
pare fault costs in relation to specific phases. Therefore, it
should also be possible to determine if the differences in
fault costs matches the phases where an improvement
should have had an effect (Damm et al., 2004). Thus, the
method satisfies the criteria for being able to evaluate the
primary research question. Consequently, the second
research question is:

How can costs of FST be used for quantifying the benefits
of software test process improvement?

This paper is organized as follows. After an overview of
related work in Section 2, the proposed method is described

in Section 3. Then, the practical applicability of the method
is demonstrated when evaluating the primary research ques-
tion in Section 4. After that, a discussion regarding the
value, validity and applicability of the results is provided.
Section 6 concludes the work followed by two appendices
that describe underlying calculations for the obtained
results.

2. Related work

Before describing the method and case study results, this
section maps the implemented concept and the selected
result evaluation method to related research work. Section
2.1 describes work that is related to the first research ques-
tion stated in Section 1, and Section 2.2 addresses the area
of the second research question.

2.1. Early fault detection and Test-Driven Development

Unit testing and inspections are common techniques for
detecting faults early. Several widely used techniques for
testing units based on their internal structure exist, e.g.
path testing, random testing and partition testing (Beizer,
1990). Some unit test techniques implement assertions
directly in the product code. Test-Driven Development
(TDD) is one technique that has such an approach (Beck,
2003). Tools such as JUnit or CPPUnit are often used
together with TDD (Beck, 2003). The main difference
between TDD and a typical test process is that in TDD,
the developers write the tests before the code. A result of
this is that the test cases drive the design of the product
since it is the test cases that decide what is required of each
unit (Beck, 2003). Therefore, TDD is not really a test tech-
nique (Beck, 2003; Cockburn, 2002); it should be consid-
ered as a design technique. In short, a developer that uses
traditional TDD works in the following way (Beck, 2003):

1. Write the test case.

2. Execute the test case and verify that it fails as expected.
3. Implement code that makes the test case pass.

4. Refactor the code if necessary.

TDD has been successfully used in several cases within
agile development methods such as eXtreme Programming
(XP) (Beck, 2003; Rasmusson, 2004). A few experiments
and case studies on the effects of such traditional TDD
have been performed. Most studies have focused on effects
on quality and productivity. Although the studies have
been performed either in experimental settings or as iso-
lated small-scale case studies, some trends have been
observed. The most apparent effect that TDD seems to
bring is that the concept increases the amount of unit test-
ing performed (Erdogmus and Morisio, 2005; George and
Williams, 2004). Thus, it is not surprising that at least one
study has shown that TDD tends to increase the quality of
the delivered code (Maximilien and Williams, 2003). How-
ever, the productivity effect of TDD seems to be uncertain.



Download English Version:

https://daneshyari.com/en/article/10348893

Download Persian Version:

https://daneshyari.com/article/10348893

Daneshyari.com


https://daneshyari.com/en/article/10348893
https://daneshyari.com/article/10348893
https://daneshyari.com/

