
Smart debugging software architectural design in SDL

W. Eric Wong a,*, Tatiana Sugeta a,1, Yu Qi a, Jose C. Maldonado b

a Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, United States
b Department of Computer Science, University of Sao Paulo at Sao Carlos, Sao Carlos, SP, Brazil

Received 15 December 2003; received in revised form 15 April 2004; accepted 15 June 2004
Available online 11 September 2004

Abstract

Statistical data show that it is much cheaper to fix software bugs at the early design stage than the late stage of the development
process where the final system has already been implemented and integrated together. The use of slicing and execution histories as an
aid in software debugging is well established for programming languages like C and C++; however, it is rarely applied in the field of
software specification for designs. We propose a solution by applying the technology at source code level to debugging software
designs represented in a high-level specification and description language such as SDL. More specifically, we extend execution
slice-based heuristics from source code-based debugging to the software design specification level. Suspicious locations in an
SDL specification are prioritized based on their likelihood of containing faults. Locations with a higher priority should be examined
first rather than those with a lower priority as the former are more suspicious than the latter, i.e., more likely to contain the faults. A
debugging tool, SmartDSDL, with user-friendly interfaces was developed to support our method. An experiment is reported to dem-
onstrate the feasibility of using our method to effectively debug an architectural design.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Architectural design; SDL; Testing; Debugging; Execution slice; Fault detection; SmartDSDL

1. Introduction

Statistical data show that it is much cheaper to fix
software bugs at the early design stage than the late
stage of the development process where the final system
has already been implemented and integrated together.
An ideal scenario would be to conduct as much testing
on design as possible followed by an effective debugging
to locate all the bugs, if any, so that they can be removed
before the coding is started. With this in mind, two
important questions have to be answered: how to repre-
sent an architectural design so that it can be easily tested

and debugged, and what kind of debugging methods
should be used to help programmer effectively locate
the bugs in an architectural design.
In this paper, the architectural design of a software

system is represented by SDL (a specification and
description language) for the following reasons. SDL
satisfies the requirements for an executable architecture
description language (Luckham et al., 1995). It allows
dynamic creation and termination of process instances
and their corresponding communication paths during
execution. As a result, SDL is capable of modeling the
architectures of dynamic distributed systems in which
the number of components and connectors may vary
during system execution. In addition, SDL can represent
all four views of software architectures (Kruchten,
1995). For example, SDL uses delay and non-delay
channels to indicate the relative physical locations of
components (Belina et al., 1991). Moreover, since SDL
specifications are executable, its dynamic execution trace

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.06.026

* Corresponding author. Tel.: +1 972 883 6619; fax: +1 972 883
2349/2399.

E-mail address: ewong@utdallas.edu (W.E. Wong).
URL: http://www.utdallas.edu/~ewong.
1 Miss Tatiana Sugeta is a visiting student from the University of

Sao Paulo at Sao Carlos.

www.elsevier.com/locate/jss

The Journal of Systems and Software 76 (2005) 15–28

mailto:ewong@utdallas.edu 


(including the exact execution counts of a given part
of an SDL specification, such as a decision, a state input,
or a context variable) generated during the simulation 2

can be collected. An architectural design in SDL-92 can
be viewed, for example, as a collection of blocks 3 and
processes communicating with each other by exchanging
signals through channels (Ellsberger et al., 1997). The
top level is a system level specification. Each system con-
tains some blocks; each block contains either blocks or
processes; blocks communicate through channels; each
channel can be either delaying or non-delaying; each
process of a block is defined by an extended finite state
machine (EFSM); they communicate through channels.
Altogether, an SDL specification provides a process
view of a system�s architectural design.
The textual representation of an SDL specification

can be viewed as ‘‘a program’’ in SDL, just like a pro-
gram in C. As a result, all the debugging methods ap-
plied to C programs can also be applied to SDL
specifications. In particular, we are interested in using
execution slice-based heuristics for locating faults 4 in
an SDL specification. Under this scenario, an execution
slice with respect to a given test case contains the set of
SDL code executed by this test. More specifically, we
can also represent an execution slice as a set of blocks,
decisions, c-uses, or p-uses, respectively, with respect
to the corresponding block, decision, c-use, or p-use
coverage criterion. Below we provide a brief explanation
on a block defined in block coverage and a decision de-
fined in decision coverage to clarify some possible
confusion.
The block coverage for SDL specifications is similar

to the well-known basic block coverage for C programs
where a basic block, also known as a block, is a se-
quence of consecutive statements or expressions con-
taining no transfers of control except at the end, so
that if one element of it is executed, all are. This of
course assumes that the underlying hardware does not
fail during the execution of a block. As for SDL, the
‘‘block’’ in the ‘‘block coverage’’ means a subset of an
SDL specification that will always be executed together
(Wong et al., 2003). It has a different meaning from the

‘‘block structure’’ in SDL which represents either a local
specification within a system specification or a remote
specification to which the system specification must con-
tain a reference, which then becomes a specification of
the next abstraction level. Although this might cause
some inconvenience, there should be no ambiguity
about which ‘‘block’’ is referred to, i.e., whether it means
a block in block coverage or a block as a structuring ele-
ment in SDL, after the surrounding context is consid-
ered. Hereafter, we refer to ‘‘block’’ as the former
unless otherwise specified. The ‘‘decision’’ coverage in
SDL considers not only ‘‘data-related decision’’ but also
‘‘event alternatives’’ (Wong et al., 2003). That is, this cri-
terion considers more than just the decision construct
represented by a diamond. In fact, the branching of
blocks can be caused either by the state transitions due
to different inputs or by decision matching. However,
to be consistent with the name (i.e., decision coverage)
used for C programs, we name this criterion also as
‘‘decision’’ coverage criterion. As for the c-use and
p-use criteria for SDL, they are very similar to those
for C programs. Interested readers can refer to Ural et
al. (2000) and Wong et al. (2003) for more details.
The objective of our study is to apply the technology

at source code level to debugging software designs rep-
resented in a high-level specification and description lan-
guage such as SDL. Execution slice-based heuristics are
extended from source code-based debugging to the soft-
ware design specification level. Suspicious locations in
an SDL specification are prioritized based on their like-
lihood of containing faults. Locations with a higher pri-
ority are more suspicious and more likely to contain
faults than those with a lower priority. A debugging
tool, SmartDSDL, with user-friendly interfaces was
developed to support our method. An illustration on
how this tool can help programmers in debugging is also
provided.
The rest of the paper is organized as follows. Section

2 describes an execution slice-based approach for debug-
ging. A debugging tool for SDL, SmartDSDL, and the
underlying methodology used for implementing this
tool, is explained in Section 3. An experiment of apply-
ing our methodology to the SDL specification of an
IGCS call agent appears in Section 4. Section 5 discusses
how to develop an effective debugging strategy. Section
6 presents an overview of some related studies. Finally,
in Section 7 we offer our conclusions and recommenda-
tions for future research.

2. An execution slice-based approach for debugging

We first present a brief overview of the commonly
used program slicing: static, dynamic, and execution.
For more details, interested readers should refer to
the references listed in Section 2.1. Then, we describe

2 In this paper, ‘‘executing an SDL specification’’ has the same
meaning as ‘‘simulating an SDL specification.’’ We also use ‘‘SDL
specifications’’ and ‘‘SDL code’’ interchangeably. In addition, since we
use Telelogic Tau as the simulator for generating execution trace with
respect to each test case, the version of the SDL used by our debugging
tool, SmartDSDL (refer to Section 3) has to be consistent with that
supported by Tau. With this in mind, we used SDL-92 instead of SDL-
2000.

3 Here, a block is a structuring element in SDL. It is different from a
block defined for the block coverage criterion. Refer to the subsequent
paragraphs for more details.

4 ‘‘Faults’’ and ‘‘bugs’’ are used interchangeably.

16 W.E. Wong et al. / The Journal of Systems and Software 76 (2005) 15–28



Download English Version:

https://daneshyari.com/en/article/10348911

Download Persian Version:

https://daneshyari.com/article/10348911

Daneshyari.com

https://daneshyari.com/en/article/10348911
https://daneshyari.com/article/10348911
https://daneshyari.com

