
‘‘Computer, please, tell me what I have to do. . .’’: an approach
to agent-aided application composition

Marcelo R. Campo *, J. Andr�es D�ıaz Pace, Federico U. Trilnik

ISISTAN Research Institute, Faculty of Sciences, UNICEN University, Campus Universitario, Paraje Arroyo Seco, (B7001BBO) Tandil, Buenos Aires,

Argentina

CONICET, Avda. Rivadavia 1917, (C1033AAJ) City of Buenos Aires, Argentina

Received 16 October 2002; received in revised form 1 February 2003; accepted 2 May 2003

Available online 21 January 2004

Abstract

The process of starting to use any reuse technology is usually one of the most frustrating factors for novice users. For this reason,

tools able to reduce the learning curve are valuable to augment the potential of the technology to rapidly build new applications. In

this work, we present Hint, an environment for assisting the instantiation of Java applications based on software agents technology.

Hint is built around a software agent that has the knowledge about how to use a reusable asset and, using this knowledge, is able to

propose a sequence of programming activities that should be carried out in order to implement a new application satisfying the

functionality the user wants to implement. The most relevant contribution of this work is the use of planning techniques to guide the

execution of instantiation activities for a given technology.

� 2003 Elsevier Inc. All rights reserved.

1. Introduction

It is a well-known fact that the more powerful the

reuse technology the more knowledge is necessary to

rapidly start to use it to produce applications. This as-

pect represents one of the most limiting factors of any

reuse technology, but it is particularly crucial to object-

based ones (Bosch, 2000). For this reason, composition

tools are an invaluable complement. These tools can
vary from simple wizards for generating code skeletons

to complex graphical tools supporting the visual

composition of applications. This kind of tools can

dramatically improve the productivity in the case of

applications that naturally fit into the scope of the target

technology (Campo et al., 2002). However, when com-

plexity grows, despite components are derived from a

domain-specific framework, an integration framework
or they are implemented following some interface stan-

dard, some kind of coding is always necessary in order
to get a running application.

At this point a deeper knowledge of underlying design

details can be necessary in order to use, or even more,

adapt the behavior of existing components. Certainly,

good quality documentation is a key issue. Nevertheless,

none of the developed documentation techniques (De-

meyer et al., 2000; Johnson, 1992) can be completely

adapted to the different types of users, especially if con-
sidering the variations on knowledge and experience

these users usually have (Helm et al., 1990). On one side,

expert users may prefer to know about design details,

and be able to make their own decisions. Many times this

kind of users can adapt a framework (Fayad et al., 2000)

in unexpected ways. On the other side, and perhaps the

most important one, novice users may just want to be

aware of higher-level aspects. This kind of users should
be able to build an application without the need of

understanding overwhelming details of design rationale.

However, this is not always the case, producing a nega-

tive impact on the benefits that the technology can bring

to enhance software development.

We believe that the problem resides not in how to

provide a specific tool for a given technology, but in how

*Corresponding author. Tel.: +54-2293440363; fax: +54-

2293440362.

E-mail addresses: mcampo@exa.unicen.edu.ar (M.R. Campo),

adiaz@exa.unicen.edu.ar (J.A. D�ıaz Pace), ftrilnik@exa.unicen.edu.ar

(F.U. Trilnik).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2003.05.003

The Journal of Systems and Software 74 (2005) 55–64

www.elsevier.com/locate/jss

mail to: mcampo@exa.unicen.edu.ar


to make the documentation an active source able to

guide a user in what should be done for building a

specific application. On the basis of this documentation,

a tool should take the principal requirements and design

decisions from the user, and then propose a number of

actions to follow in order to get a running application.
This process can be approximated by means of what we

have called the ‘‘Computer, please, tell me what I have

to do. . .’’ paradigm. The rest of the paper presents an in
depth description of this agent-based approach, orga-

nized as follows. Section 2 introduces the main concepts

of the mentioned paradigm. Section 3 outlines the

architecture of the Hint environment, illustrated with an

example of framework instantiation. Section 4 covers
the Smartbooks documentation method through which

the instantiation knowledge is described. Section 5

shortly explains the use of planning capabilities to

elaborate instantiation plans. Section 6 discusses pre-

liminary results and lessons learned. Finally, Section 7

rounds up the conclusions of the work.

2. The ‘‘Computer, please, tell me what I have to do. . .’’
paradigm

Certainly, a pursued ideal is to have a system that

(like in Star Trek) we could ask the computer to solve

any problem by simply asking: ‘‘Computer, please, solve

this problem. . .’’, and automatically obtain the result
without any further effort. For example, let’s suppose we
want to build a graphical editor for Pert-like charts and

there is a framework for building graphical editors

available. In the ideal situation we would ask the com-

puter to build a system that should satisfy the following

informal specification:

‘‘It should be possible to interactively create graphi-

cal objects representing events, and to relate these

events through precedence links. The events should

have visual representation for its attributes, and two

of the attributes will be edited through the graphical

interface. Besides, each attribute could be related

with other ones, both from the same or related

events’’.

The computer would interpret these requirements and
using the existing framework and components would

produce the required application. Unfortunately, com-

puter science is currently rather far of providing such a

system, particularly in domains such as software devel-

opment.

Despite this reality, we can approximate this ideal by

using a paradigm in which the computer tells us what

steps we should carry out in order to get an implemen-
tation using a given reuse technology. That is, given a set

of functional requirements for an application, we should

be able to ask the computer, ‘‘Computer, please, tell me

what I have to do to implement this functionality using

the existing software that you know how to use’’. In this

approach, instead of providing the computer with the

previous requirements, the computer shows the user the

different functionality that could be derived from an
existing reusable asset and the user can select the aspects

he/she judges related with the required functionality.

Next, using the knowledge about the existing assets, the

computer answers the list of programming activities that

should be carried out in order to implement such

application. These activities can vary from the advice of

which classes should be specialized, what methods

should be overridden, what component should be used,
what proxies should be implemented, what parameters

should be set with specific values, etc. Note that an

important aspect of the approach is the interaction with

the user, so that he/she can provide the tool with the

main design decisions to guide the generation of pro-

gramming activities.

Following this idea, we developed Hint, a Java tool

based on agent technology (Bradshaw, 1997) designed to
provide semi-automated support to the process of

application composition. Hint is based on the Smart-

books documentation method (Ortigosa et al., 2000),

which extends common documentation techniques with

instantiation schemes specifying how a piece of software

should be specialized or used to implement a given

functionality. Using least-commitment planning tech-

niques (Weld, 1994), the Hint agent is able to build an
implementation plan from the set of functionality that

the user selected from the possible functionality that the

documented reusable asset can provide. This plan con-

sists of the sequence of programming tasks to be

accomplished in order to produce a final application.

When the developer starts executing these tasks, the

agent observes the process and proceeds to modify the

instantiation plan whenever new information, not pre-
viously available, can be deduced from the developer’s

behavior. These features distinguish Hint from other

approaches in that developers, particularly novice ones,

can start the development with a guide of what steps they

have to carry out in order to build their applications.

3. The Hint environment

Hint represents the result of a three-year research

effort on the subject (Ortigosa et al., 2000), incorporat-

ing in its last release enhanced functionality to deal with

Java frameworks and components, CORBA adaptation

and aspect-oriented development (Kiczales et al., 1997).

In the current version it comprises four main compo-

nents: Documentation Tool, Rule Generator, Functional-
ity Collector, and the Hint agent, which is in turn

composed by three components: Planner, Task Manager

56 M.R. Campo et al. / The Journal of Systems and Software 74 (2005) 55–64



Download English Version:

https://daneshyari.com/en/article/10348936

Download Persian Version:

https://daneshyari.com/article/10348936

Daneshyari.com

https://daneshyari.com/en/article/10348936
https://daneshyari.com/article/10348936
https://daneshyari.com

