
A language-independent software renovation framework

M. Di Penta a,*, M. Neteler b, G. Antoniol a, E. Merlo c

a Department of Engineering, RCOST—Research Centre on Software Technology, University of Sannio, Via Traiano, 1-82100 Benevento, Italy
b ITC-irst Istituto Trentino Cultura, Via Sommarive, 18-38050 Povo (Trento), Italy

c Département de Génie Informatique, Ecole Polytechnique de Montreal, P.O. Box 6079, Succ. Centre-Ville, Montreal, Quebec, Canada H3C 3A7

Received 1 April 2003; received in revised form 16 July 2003; accepted 2 March 2004
Available online 8 December 2004

Abstract

One of the undesired effects of software evolution is the proliferation of unused components, which are not used by any appli-
cation. As a consequence, the size of binaries and libraries tends to grow and system maintainability tends to decrease. At the same
time, a major trend of today�s software market is the porting of applications on hand-held devices or, in general, on devices which
have a limited amount of available resources. Refactoring and, in particular, the miniaturization of libraries and applications are
therefore necessary.
We propose a Software Renovation Framework (SRF) and a toolkit covering several aspects of software renovation, such as

removing unused objects and code clones, and refactoring existing libraries into smaller more cohesive ones. Refactoring has been
implemented in the SRF using a hybrid approach based on hierarchical clustering, on genetic algorithms and hill climbing, also tak-
ing into account the developers� feedback. The SRF aims to monitor software system quality in terms of the identified affecting fac-
tors, and to perform renovation activities when necessary. Most of the framework activities are language-independent, do not
require any kind of source code parsing, and rely on object module analysis.
The SRF has been applied to GRASS, which is a large open source Geographical Information System of about one million LOCs

in size. It has significantly improved the software organization, has reduced by about 50% the average number of objects linked by
each application, and has consequently also reduced the applications� memory requirements.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Refactoring; Software renovation; Clustering; Genetic algorithms; Hill climbing

1. Introduction

Software systems evolution often presents several fac-
tors that contribute to deteriorate the quality of the sys-
tem itself (Lehman and Belady, 1985). First, unused
components, which have been introduced for testing
purposes or which belong to obsolete functionalities,
may proliferate. Second, maintenance and evolution
activities are likely to introduce clones, while, for exam-

ple, adding support and drivers for an architecture sim-
ilar to an already supported one (Antoniol et al., 2002).
Third, library sizes tend to increase, because new func-
tionalities are added and refactoring is rarely performed;
for the same reasons, also the number of inter-library
dependencies, some of which are circular, tends to in-
crease. Finally, sometimes, new functionalities logically
related to already existing ones are added in a non-sys-
tematic way and they result in sets of modules which
are neither organized nor linked into libraries. As a con-
sequence, systems become difficult to maintain. More-
over, unused objects, big libraries, and circular
dependencies significantly increase application sizes
and memory requirements. This is clearly in contrast

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.03.033

* Corresponding author.
E-mail addresses: dipenta@unisannio.it (M. Di Penta), neteler@

itc.it (M. Neteler), antoniol@ieee.org (G. Antoniol), merlo@info.
polymtl.ca (E. Merlo).

www.elsevier.com/locate/jss

The Journal of Systems and Software 77 (2005) 225–240

mailto:dipenta@unisannio.it 
mailto:neteler@ 
mailto:antoniol@ieee.org 
mailto:merlo@info. 


with today�s industry hype towards porting existing soft-
ware applications onto hand-held devices, such as Per-
sonal Digital Assistants (PDA), onto wireless devices
(e.g., multimedia cell phones), or, in general, onto de-
vices with limited resources.
This paper proposes the SRF to monitor and control

some of the quality factors which have been described
above. When the number of unused objects and clones
increase, or when library sizes become unmanageable,
some actions may be taken among the several possible
ones. First and foremost, unused code may be removed
and clones may be monitored or factored out. Further-
more, some form of restructuring, at library and at
object file level, may be required. Together with moni-
toring and improving maintainability, the SRF eases
the miniaturization challenge of porting applications
onto limited resources devices.
Most of the SRF activities deal with analyzing depen-

dencies among software artifacts. For any given soft-
ware system, dependencies among executables and
object files may be represented via a dependency graph,
which is a graph where nodes represent resources and
edges represent dependencies. Each library, in turn,
may be thought of as a subgraph in the overall object file
dependency graph. Therefore, software miniaturization
can be modeled as a graph partitioning problem. Unfor-
tunately, it is well known that graph partitioning is an
NP-hard problem (Garey and Johnson, 1979) and thus
heuristics have been adopted to find a ‘‘good-enough’’
solution. For example, one may be interested to first
examine graph partitions by minimizing cross edges be-
tween subgraphs which correspond to libraries. More
formally, a cost function describing the restructuring
problem has to be defined and heuristics to drive the
solution search process must be identified and applied.
We propose a novel approach in which hierarchical

clustering and Silhouette statistics (Kaufman and Rous-
seeuw, 1990) are initially used to determine the optimal
number of clusters and the starting population of a Soft-
ware Renovation Genetic Algorithm (SRGA). This ini-
tial step is followed by a SRGA search aimed at
minimizing a multi-objective function which takes into
account, at the same time, both the number of inter-li-
brary dependencies and the average number of objects
linked by each application. Finally, by letting the SRGA
fitness function also consider the experts� suggestions,
the SRF becomes a semi-automatic approach composed
of multiple refactoring iterations, which are interleaved
by developers� feedback. To speed up the search process,
heuristics based on a Genetic Algorithm (GA) and a
modified GA (Talbi and Bessière, 1991) approach were
proposed. Performance improvement was also achieved
by means of a hybrid approach, which combines GA
strategies with hill climbing techniques.
The SRF has the advantage of being language inde-

pendent. All activities, except clone detection, rely on

information extracted from object files; furthermore,
the clone detection algorithm adopted in the SRF is
not tied to any specific programming language, provided
that a set of metrics can be extracted from the source
code.
The SRF has been applied to a large Open Source

software system: a Geographical Information System
(GIS) named GRASS 1 (Geographic Resources Analysis
Support System). GRASS is a raster/vector GIS com-
bined with integrated image processing and data visual-
ization subsystems (Neteler and Mitasova, 2002)
composed of 517 applications and 43 libraries, for a
total of over one million LOCs.
The number of team members is small and it is about

7–15 active developers. Decisions are usually taken by
the members most capable to solve specific problems.
Developers are also GRASS users and they often focus
on their needs within the general project.
This paper is organized as follows. First, a short re-

view on related work (Section 2) and on main notions
of clustering and GAs (Section 3), will be presented.
Then, the SRF is presented in Section 4. The case study
software system (i.e., GRASS) is described in Section 5,
while results are presented and discussed in Section 6,
and are followed by conclusions and work-in-progress
in Section 7.

2. Related work

Many research contributions have been published
about software system modules clustering and restruc-
turing, identifying objects, and recovering or building
libraries. Most of these work applied clustering or
Concept Analysis (CA).
An overview of CA applications to software reengi-

neering problems was published by G. Snelting in his
seminal work (Snelting, 2000). Snelting applied CA to
several remodularization problems such as exploring
configuration spaces (see also Krone and Snelting,
1994), transforming class hierarchies, and remodulariz-
ing COBOL systems. Kuipers and Moonen (2000) com-
bined CA and type inference in a semi-automatic
approach to find objects in COBOL legacy code. Anton-
iol et al. (2001a) applied CA to the problem of identify-
ing libraries and of defining new directories and files
organizations in software systems with degraded archi-
tectures. As according to Krone and Snelting (1994),
Kuipers and Moonen (2000), and Antoniol et al.
(2001a), we believe that with the present level of technol-
ogy a programmer-centric approach is required, since
programmers are in charge of choosing the proper
remodularization strategy based on their knowledge

1
http://grass.itc.it

226 M. Di Penta et al. / The Journal of Systems and Software 77 (2005) 225–240

http://grass.itc.it/grassdevel.html


Download English Version:

https://daneshyari.com/en/article/10348962

Download Persian Version:

https://daneshyari.com/article/10348962

Daneshyari.com

https://daneshyari.com/en/article/10348962
https://daneshyari.com/article/10348962
https://daneshyari.com

