
Characterizing a data model for software measurement q

L. Chirinos a, F. Losavio a,*, J. Bøegh b,1

a Laboratorio de Tecnolog�ıa del Software (LaTecS), Centro de Ingenier�ıa de Software y Sistemas (ISYS), Facultad de Ciencias,

Universidad Central de Venezuela, Apdo. 47567, Los Chaguaramos 1041-A, Caracas, Venezuela
b DELTA Danish Electronics, Light & Acoustics, Venlighedsvej 4, DK-2970 Hørsholm, Denmark

Received 6 June 2003; received in revised form 22 January 2004; accepted 24 January 2004

Available online 6 March 2004

Abstract

In order to develop or acquire a software product with appropriate quality, it is widely accepted that quality must be identified,

planned, measured and controlled during the development process using quality measures based on a quality model. However, few

practitioners in the software industry would call measurement a success story. This weakness arises, on one hand because the people

involved are not always aware of the importance of collecting measures. The policy of the management board must make sure that

people are sufficiently motivated and that data is actually collected in the specified way. On the other hand, software measures have

been often poorly defined in industry. When software measurement definitions are incomplete and/or poorly documented, it is easy

to collect invalid or incomparable measures from different data collectors. Thus, the primary issue is not only whether a definition

for a measure is theoretically correct, but that everyone understands what the measured values represent. Then, the values can be

collected consistently and other people, different from the collectors, can interpret the results correctly and apply them to reach valid

conclusions. The objective of this paper is to present a data MOdel for Software MEasurement (MOSME) to explicitly define

software measures, providing the elements required to describe a consistent measurement process. MOSME can be used for defining

and modeling data sets of software products involving several software projects. The inspiration of this work comes from the

SQUID (Software QUality In the Development process) approach, which combines many results from previous research on

software quality and the European Commission funded projects SQUAD and CLARiFi. The application of MOSME is illustrated

with a case study. We believe that a conceptual model of fully defined meaningful measures will help both the management board to

give support to the data collection policy and the practitioner to avoid ambiguity in the definitions of the data measures.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Software measurement; Software quality; Measure; Metric; Model for software measurement

1. Introduction

The behavior of real world objects can be character-

ized formally and quantitatively by measurement only if

the measurements are objective, empirical and repro-

ducible. Even if semantically the term ‘‘objective’’ means

not involving human judgment, objective measurement

means in this context that a written and agreed proce-

dure or measurement method for assigning a number or

category to an attribute (measurable property) of an

object is established, preserving our intuition about the

behavior of the object. Empirical measurement relates to
the way of obtaining data (from observation or from a

psychometrically valid questionnaire). Reproducible

measurement means that the same result is obtained

when different persons repeat the measurement. In order

to fulfill these requirements it is important to identify

and define all the elements involved in measurement, as

well as the relationships existing among them (Briand

et al., 2002). Many software measurement schemes fail
due to poor definitions (Kitchenham et al., 2001).

Measurement paradigms such as GQM (Solingen

and Berghout, 1999) and Ami (Ami Handbook, 1992)

qThis work is a result of the CEE INCO SQUAD project EP 962019

and the CDCH ARCAS project 03.13.4584.00 of the Universidad

Central de Venezuela, Caracas, Venezuela.
*Corresponding author. Tel.: +58-212-60516/212-7536984; fax:

+58-212-7536984.

E-mail addresses: lchirinos@cantv.net (L. Chirinos), flosav@

cantv.net (F. Losavio), jb@delta.dk (J. Bøegh).
1 Tel.: +45-721-94397.

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2004.01.019

The Journal of Systems and Software 74 (2005) 207–226

www.elsevier.com/locate/jss

mail to: lchirinos@cantv.net


provide methods for identifying the measures required

in a specific situation. Likewise, for example, the metrics

proposed by Chidamber and Kemerer (1994) and Paul

(1993) identify specific sets of measures appropriate for

particular contexts. However, these approaches do not

define how such measures should be collected and
stored. The quality of any measurement program is

clearly dependent on careful data collection (Fenton and

Pfleeger, 1997). Data collection is becoming a discipline

in itself, where specialists work to ensure that measures

are defined unambiguously, that data collection is con-

sistent and complete, and that data integrity is not

at risk.

In order to ensure repeatability, Kitchenham et al.
(1995) suggested the inclusion of the following elements

for defining the measure: the entity (i.e. software object),

the attribute (i.e. property), and the unit of measurement.

They also showed that the entity–attribute–unit is

insufficient for ensuring comparability. The conditions

under which a measurement is taken must also be

specified. This is called the measurement protocol by

Kitchenham or the counting rule by Bøegh et al. (1999).
A counting rule is closely related to a data collection

process, which is also considered by GQM. It identifies

the responsible for the data extraction, the point in the

development process when the measure is taken and the

methods and tools used to extract, record, and store

the data values.

Based on these issues, Kitchenham et al. (2001) pro-

posed a method for specifying models of software data
sets in order to capture the definitions and possible

relationships among software measures. It aims to pro-

vide not only a standard structure for defining software

measures, but also a means of modeling complex data

sets. It is primarily based on the lessons learned from a

toolset developed by the ESPRIT project SQUID

(Bøegh et al., 1999) to support software quality mea-

surement and prediction. In Bøegh et al. (1999) and
Kitchenham et al. (2001) the view of measurement

modeling suggested by Kitchenham et al. (1995) is ex-

tended. Although the counting rule is essential for

ensuring repeatable and comparable values, important

issues such as the characterization of the entities with

respect to the measurable attribute, have not been

explicitly considered. Moreover, the circumstances for

applying the counting rule have only been considered by
GQM.

Recently, the International Standard Organization

(ISO) has formulated a standard for software measure-

ment (ISO/IEC 15939, 2002). It focuses on two key

concepts: a measurement process model and a non-nor-

mative description of a measurement information model

which is merely given as a recommendation. The mea-

surement process model defines the activities of the
measurement process for the specification of the mea-

surement information required, the application of the

measures, the analysis and evaluation of the results.

The measurement process model is an adaptation of the

Plan-Do-Check-Act cycle. The activities are sequenced

in an iterative cycle allowing for continuous feedback

and improvement of the measurement process, which is

driven by the information needs of the organization. An
information need (goal for GQM) is an insight necessary

to manage goals, risks and problems. For each infor-

mation need, the measurement process produces an

information product, which is represented by one or

more indicators and their associated interpretations that

address information needs. On the other hand, the

measurement information model supports the mea-

surement process. It captures the measurement termi-
nology and describes the links between measures and

information needs, expressed by entities and measurable

attributes of concern. This link is defined through the

measurement constructs. Each construct may involve

several types or levels of measures (base and derived

measures and indicators). This issue is not considered by

the other frameworks and it is important for industry

because it enables the data collection (using base mea-
sures) to be uncoupled form the analysis (using indica-

tors). Moreover, it associates pre-defined decision

criteria with indicators, which is critical to industry. It

provides a structure very similar to the GQM refinement

(Solingen and Berghout, 1999). However, the relations

defined between the elements involved in the measure

definition are not normative.

This paper proposes a MOdel for Software MEa-
surement (MOSME), on the basis of the previous re-

search, constituting a conceptual data model that

explicitly identifies and accurately defines the main ele-

ments and relationships involved in the software mea-

sure definition. Our model contributes on one hand, to

improve the software measurement process by providing

the unambiguous capture of software measure defini-

tions, in order to obtain consistently the measurement
values during software development. On the other hand,

it reduces some of the weaknesses identified in the

common practice related to the analysis of the measured

values (Bøegh et al., 1999; Kitchenham et al., 2001). In

particular, the model provides a definition of the

counting rule which takes into account the main aspects

concerning this notion. It is based on the ‘‘context of

use’’ issue, to enlighten the influence of the people in-
volved in the measurement, as it is suggested by GQM,

Moreover, MOSME gives explicit definitions of the

main elements and relationships involved in the con-

struction of a measure. This research is based on the

works already mentioned (Kitchenham et al., 1995,

2001; Solingen and Berghout, 1999; Bøegh et al., 1999),

focusing the basic measurement terminology of the ISO

15939 standard (ISO/IEC 15939, 2002) and being suffi-
ciently general to be applied to define measures for new

or for existing software systems. Finally, the concepts

208 L. Chirinos et al. / The Journal of Systems and Software 74 (2005) 207–226



Download English Version:

https://daneshyari.com/en/article/10348986

Download Persian Version:

https://daneshyari.com/article/10348986

Daneshyari.com

https://daneshyari.com/en/article/10348986
https://daneshyari.com/article/10348986
https://daneshyari.com

