Available online at www.sciencedirect.com

The Journal of Systems and Software 77 (2005) 67-80

d &< The Journal of
scIENcECDIREcT® systems and
Software

www.elsevier.com/locate/jss

Fair scheduling of dynamic task systems on multiprocessors ™

Anand Srinivasan, James H. Anderson *

Department of Computer Science, University of North Carolina, 256, Sitterson Hill, CB #3175, Chapel Hill, NC 27599-3175, USA

Received 8 November 2002; received in revised form 1 September 2003; accepted 12 December 2003
Available online 11 September 2004

Abstract

In dynamic real-time task systems, tasks that are subject to deadlines are allowed to join and leave the system. In previous work,
Stoica et al. and Baruah et al. presented conditions under which such joins and leaves may occur in fair-scheduled uniprocessor
systems without causing missed deadlines. In this paper, we extend their work by considering fair-scheduled multiprocessors. We
show that their conditions are sufficient on M processors, under any deadline-based Pfair scheduling algorithm, if the utilization
of every subset of M — 1 tasks is at most one. Further, for the general case in which task utilizations are not restricted in this
way, we derive sufficient join/leave conditions for the PD? Pfair algorithm. We also show that, in general, these conditions cannot

be improved upon without causing missed deadlines.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Dynamic task systems; Pfairness; Multiprocessor; Real-time scheduling

1. Introduction

In many real-time systems, the set of runnable tasks
may change dynamically. For example, in an embedded
system, different modes of operation may need to be
supported; a mode change may require adding new tasks
and deleting existing tasks. Another example is a desk-
top system that supports real-time applications such as
multimedia and collaborative-support systems, which
may be initiated at arbitrary times.

The distinguishing characteristic of dynamic task sys-
tems such as these is that tasks are allowed to join and
leave the system. If such joins and leaves are unre-
stricted, then the system may become overloaded, and
deadlines may be missed. Thus, joins and leaves must
be performed only under conditions that ensure that

* Work supported by NSF grants CCR 9972211, CCR 9988327,
ITR 0082866, and CCR 0204312.
* Corresponding author.
E-mail address: anderson@cs.unc.edu (J.H. Anderson).

0164-1212/$ - see front matter © 2004 Elsevier Inc. All rights reserved.

d0i:10.1016/j.js5.2003.12.041

deadline guarantees are not compromised. A suitable
join condition usually can be obtained from the feasibil-
ity test associated with the scheduling algorithm being
used. A leave condition is somewhat trickier. In partic-
ular, if an “over-allocated’ task is allowed to leave, then
it might re-join immediately, and thus effectively execute
at a higher-than-prescribed rate.

In this paper, we consider the problem of scheduling
such task systems on multiprocessors. This problem has
been studied earlier in the context of uniprocessor static-
priority (Sha et al., 1989; Tindell et al., 1992) and fair-
allocation schemes (Baruah et al., 1998; Stoica et al.,
1996). Our focus is fair scheduling because it is the only
known way of optimally scheduling recurrent real-time
tasks on multiprocessors (Anderson and Srinivasan,
2004; Baruah et al., 1996; Baruah et al., 1995; Srinivasan
and Anderson, 2002). In addition, practical interest in
multiprocessor fair scheduling algorithms is growing.
For example, Ensim Corp., an Internet service provider,
has deployed such algorithms in its product line
(Keshav, 2001). The need to support dynamic tasks is
fundamental in this setting.


mailto:anderson@cs.unc.edu 

68 A. Srinivasan, J.H. Anderson | The Journal of Systems and Software 77 (2005) 67-80

In fair scheduling disciplines, tasks are required to
make progress at steady rates. Steady allocation rates
are ensured by scheduling in a manner that closely
tracks an ideal, fluid allocation. The lag of a task meas-
ures the difference between its ideal and actual alloca-
tions. In fair scheduling schemes, lags are required to
remain bounded. (Such a bound in turn implies a bound
on the timeliness of real-time tasks.) If a task’s lag is pos-
itive, then it has been under-allocated; if negative, then it
has been over-allocated. In the uniprocessor join/leave
conditions presented previously (Baruah et al., 1998;
Stoica et al., 1996, a task is allowed to leave iff it is
not over-allocated, and join iff the total utilization after
it joins is at most one.

Extending the above-mentioned work to multiproces-
sors is not straightforward; in fact, Baruah et al. explic-
itly noted the multiprocessor case as an open problem
Baruah et al., 1998. In recent work, dynamic multiproc-
essor systems were considered by Chandra et al. (2000,
2001). However, their work was entirely experimental
in nature, with no formal analysis of the algorithms con-
sidered. In this paper, we present join/leave conditions
for which such analysis is provided. Before presenting
a more detailed overview of the contributions of this
paper, we briefly describe some of the fair scheduling
concepts used in this paper.

Pfair scheduling. The periodic task model provides the
simplest notion of a recurrent real-time task. In this
model, successive job releases (i.e., invocations) by the
same task are spaced apart by a fixed interval, called
the task’s period. Periodic tasks can be optimally sched-
uled on multiprocessors using Pfair scheduling algo-
rithms Anderson and Srinivasan, 2004; Baruah et al.,
1996; Baruah et al., 1995. Pfairness requires the lag of
each task to be bounded between —1 and 1, which is a
stronger requirement than periodicity. As we shall see,
these lag bounds have the effect of breaking each task
into quantum-length subtasks that must be scheduled
within windows of approximately equal lengths. The
length and alignment of a task’s windows are deter-
mined by its weight. The weight or utilization of a task
is the ratio of its per-job execution cost and period; a
task’s weight determines the processor share it requires.
Fig. 1(a) shows the subtasks and windows for the first
two jobs of a periodic task 7" with an execution require-
ment of 8 and a period of 11 (i.e., of weight 8/11).

In the sporadic model, the periodic notion of recur-
rence is relaxed by specifying a minimum (rather than
exact) spacing between consecutive job releases of the
same task. In recent work (Anderson and Srinivasan,
2000; Srinivasan and Anderson, 2002), we extended
the sporadic model to obtain the intra-sporadic (IS)
and generalized intra-sporadic (GIS) models. The spo-
radic model allows jobs to be released “late’”; the IS
model allows subtasks to be released late, as illustrated
in Fig. 1(b). The GIS model is obtained from the IS

model by allowing subtasks to be absent. Fig. 1(c) shows
an example.

In Srinivasan and Anderson (2002), we showed that
the PD? Pfair algorithm optimally schedules static GIS
task systems on multiprocessors. In Anderson and Srin-
ivasan (2000), we proved that the (simpler) earliest-pseu-
do-deadline-first (EPDF) algorithm is optimal for
scheduling static IS task systems on two processors.
(PD? and EPDF are described in Section 2.2.)

Contributions. In this paper, we extend our earlier
work, as well as prior work on uniprocessor fairness,
in several significant ways. First, we show that the pre-
viously-presented uniprocessor join/leave conditions
(Baruah et al., 1998; Stoica et al., 1996) are insufficient
for avoiding deadline misses when tasks are scheduled
using any of a class of algorithms that includes all
known (dynamic-priority) Pfair scheduling algorithms.
Second, we show that these uniprocessor conditions
are sufficient when using any deadline-based algorithm,
if the total weight of any subset of M — 1 tasks is at
most one at all times. This result extends our earlier re-
sult on the optimality of EPDF for two-processor sys-
tems (Anderson and Srinivasan, 2000). Third, we
derive sufficient conditions (that are tight) for the gen-
eral case in which task weights are not restricted as
above, and PD? is used for scheduling.

Overview. The rest of the paper is organized as fol-
lows. In Section 2, needed definitions are given. In Sec-
tion 3, our join/leave conditions are stated. Results
pertaining to the EPDF and PD? algorithms are then
presented in Sections 4 and 5, respectively. We conclude
in Section 6.

2. Preliminaries

In the following subsections, relevant concepts and
terms are defined. We begin with Pfair scheduling.

2.1. Pfair scheduling

In defining notions relevant to Pfair scheduling, we
limit attention (for now) to periodic tasks; we assume
that each such task releases its first job at time 0. A peri-
odic task 7 with an integer period T.p and an integer
per-job execution cost T.e has a weight wi(T)= T.e/
T.p, where 0 <wt(T)< 1. Such a task T is light if
wit(T) < 1/2, and heavy otherwise.

Under Pfair scheduling, processor time is allocated in
discrete time units, called quanta; the time interval [z,
t+ 1), where ¢ is a nonnegative integer, is called slot .
(Hence, time ¢ refers to the beginning of slot ¢.) In each
slot, each processor can be allocated to at most one task.
A task may be allocated time on different processors,
but not in the same slot (i.e., interprocessor migration
is allowed but parallelism is not). The sequence of allo-



Download English Version:

https://daneshyari.com/en/article/10349084

Download Persian Version:

https://daneshyari.com/article/10349084

Daneshyari.com


https://daneshyari.com/en/article/10349084
https://daneshyari.com/article/10349084
https://daneshyari.com/

