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Abstract

We present a new data structure of size 3M bits, whereM is the size of the universe at hand, for realizing a discrete priority queue.
When this data structure is used in combination with a new memory topology it executes all discrete priority queue operations in
O(1) worst case time. In doing so we demonstrate how an unconventional, but practically implementable, memory architecture can
be employed to sidestep known lower bounds and achieve constant time performance.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we reexamine the well known ‘‘discrete
priority queue’’ problem of van Emde Boas et al. (1997).
Operating over the bounded universe of integers
M ¼ ½0; . . . ;M � 1�, the usual operations of Insert and
ExtractMin are supported, as are the additional opera-
tions of finding and removing any value, and finding

Predecessor(e) and Successor(e). The last two operations
determine, respectively, the largest element present that
is less than e, and the smallest greater than e. The prob-
lem is referred to by Mehlhorn et al. (1998) as the union-
split-find problem. Under this terminology, one thinks
of [0, . . . ,M � 1] as being partitioned into subranges that
can be further subdivided or merged, and that one can
ask for the subrange containing a given value. We revert
to the priority queue analogy and terminology of van
Emde Boas et al. and more formally define the data type
as:

Definition 1. The discrete extended priority queue prob-

lem is to maintain a set, N of size N, with elements
drawn from an ordered bounded universe
M ¼ ½0::M � 1�, and support the following operations:
Insert(e) N :¼ N [ feg
Delete(e) N :¼ N n feg

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2004.09.002

q These results appeared in preliminary form in the Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(Brodnik et al., 2001).
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Member(e) Return whether e 2 N
Min Find the smallest element of N
Max Find the largest element of N
DeleteMin Delete the smallest element of N
DeleteMax Delete the largest element of N
Predecessor(e) Find the largest element of N less

than e

Successor(e) Find the smallest element of N greater
than e

We will refer to the predecessor of an element e as its left

neighbor and the successor as its right neighbor. When
talking about the neighbors of e we mean the left and
the right neighbor. The static version of the problem
does not include the Insert, Delete, DeleteMin,
and DeleteMax operations, instead the set may be
preprocessed. We let m denote lgM.

1.1. Lower bounds and some matching upper bounds

Under the pointer machine model (cf. (Schönhage,
1980)) Mehlhorn et al. (1998) proved a lower bound of
X(lg lgM) for the discrete priority queue problem. The
stratified tree by van Emde Boas et al. provides a match-
ing upper bound (van Emde Boas et al., 1997). More
recently, Beame and Fich (2002) gave a lower bound,
for the static version, of Xðminððlg lg M= lg lg lg
MÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lg N= lg lg N

p
ÞÞ, when restricting the memory

usage to NO(1), under the communication game model
(cf. (Miltersen, 1994, 1979)) which also applies to the cell
probe (cf. (Yao, 1981)) and RAM (cf. (van Emde Boas,
1990)) models. This lower bound implies the same lower
bound for the dynamic version. They also gave a match-
ing upper bound, in the RAM model and hence the
communication game and the cell probe models, for
the static version of the problem. Andersson and Tho-
rup (2000) gave a data structure and an algorithm with
Oð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lg N= lg lg N

p
Þ worst case time for the dynamic ver-

sion. For the static case, Brodnik and Munro (1996)
gave a data structure with O(1) worst case time for
any N but using O(M) space. On the other hand, Ajtai
et al. (1986) presented a solution using only O(N) space
when N = O(M1/p).

1.2. Model of computation

Our goal is to sidestep these lower bounds, but to re-
tain a practically implementable model of computation.
Our model is based on the RAM model of computation
which includes branching and the arithmetic operations
addition and subtraction. We will also need bitwise boo-
lean operations and multiplication (cf. MBRAM (van
Emde Boas, 1990)). However, we do not want the model
to be unrealistic and therefore we restrict the model to

only use bounded registers. The registers we use are at
least m bits wide; i.e. a given memory location can store
at least m-bit values and all operations are defined for
arguments with at least m bits. For fixed m, this model
of computation is implemented by any standard compu-
ter today.
Operations to search for Least (Most) Significant Bit

(LSB, MSB) in a register can be implemented to run in
O(1) time in our model, using a technique called Word-

Size-Parallelism (Brodnik, 1993) (also, see (Fredman
and Willard, 1993)). Hence, we let these operations be
defined in the model as well. Alternatively, the use of
O(M�) extra bits permits such queries to be answered
in constant time by simple table lookup.
The final aspect, and the crucial twist, of our model

of computation is the notion of a word of memory.
Under the standard model, a word is a sequence of
bits and each bit is in one word only. We will consider
a model in which a single bit may be in several different
words. The notion of a ‘‘random access machine with
byte overlap’’, RAMBO, was introduced by Fredman
and Saks (1989). The way the bits occur, in the part of
the memory where bytes overlap, has to be specified as
part of the model variant.
We consider a variant which we refer to as Yggdrasil

(see Section 2.3). The part of the memory where bytes
overlap has been developed in hardware by Priqueue

AB, as a SDRAM memory module according to the
PC100 standard (Leben et al., 1999).

2. The Split Tagged Tree

In this section we introduce an abstract data structure
Split Tagged Tree (STT) used to solve the discrete
extended priority queue problem. We first define the
STT and describe its properties, and later use these
properties to implement the operations from Definition
1.

2.1. The split tagged tree and its properties

In a complete binary tree that has leaves for every ele-
ment in a universeM (cf. trie with leaves 0..M � 1 num-
bered from left to right, and leaves corresponding to
elements of N are ’’tagged’’) we define:

Definition 2. An internal node is a splitting node if there
is at least one tagged leaf in each of its subtrees. The
splitting node m is a left splitting node of e if e is a leaf in
the left subtree of m. The first left splitting node on the
path from e to the root is the lowest left splitting node of
e. Right splitting nodes and the lowest right splitting node

of e are defined symmetrically.
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