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Abstract

Hyperbox classifiers are one of the most appealing and intuitively transparent classification schemes. As the name itself stipulates,
these classifiers are based on a collection of hyperboxes––generic and highly interpretable geometric descriptors of data belonging to
a given class. The hyperboxes translate into conditional statements (rules) of the form ‘‘if feature1 is in [a,b] and feature2 is in [d, f]
and . . . and featuren is in [w,z] then class x’’ where the intervals ([a,b], . . . , [w,z]) are the respective edges of the hyperbox. The pro-
posed design process of hyperboxes comprises of two main phases. In the first phase, a collection of ‘‘seeds’’ of the hyperboxes is
formed through data clustering (realized by means of the Fuzzy C-Means algorithm, FCM). In the second phase, the hyperboxes are
‘‘grown’’ (expanded) by applying mechanisms of genetic optimization (and genetic algorithm, in particular). We reveal how the
underlying geometry of the hyperboxes supports an immediate interpretation of software data concerning software maintenance
and dealing with rules describing a number of changes made to software modules and their linkages with various software measures
(such as size of code, McCabe cyclomatic complexity, number of comments, number of characters, etc.).
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1. Introductory comments

Pattern classifiers (Duda and Hart, 1973) come with
their underlying geometry. As a matter of fact, the geo-
metry and related learningmechanisms are the two essen-
tial elements that determine the resulting performance of
any pattern classifier. What we witness today is an evi-
dent panoply of technologies used to design classifiers:
neural networks, fuzzy rule-based systems (and ensuing
fuzzy classifiers), k-Nearest Neighbor (k-NN) classifiers,
and genetic optimization are just a few representative cat-
egories of pattern classifiers. The assumed geometry of
the classifier (say, hyperplanes, receptive fields, etc.) im-
plies its learning capabilities and resulting accuracy.

Quantitative Software Engineering inherently dwells on
empirical data that need to be carefully analyzed. As
there are no physical underpinnings characterizing soft-
ware processes and ensuing software products, the com-
monly encountered assumptions that govern ‘‘standard’’
regression models and classifiers do not hold and could
be difficult to justify. On the other hand, we anticipate
that models developed in the realm of Software Engineer-
ing should be transparent meaning that their readability
and a level of comprehension are high. Being faced by the
lack of physical underpinnings on one hand and the need
for the user-friendliness on the other, it becomes advis-
able to set up a logic-based development framework
and adopt logic as a paramount feature of the resulting
constructs. In this way the interpretability of the models
is inherently associated with the logic roots of the envi-
ronment. Likewise their geometry is also implied by the
logic fundamentals we have started with at the beginning.
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The quest for interpretability of models in Software
Engineering comes with a variety of facets and diverse
applications including software specification, software
maintenance, reliability, and portability. Apparently,
some categories of models are geared towards interpreta-
tional clarity and make it one of the dominant features.
This becomes visible in rule-based systems, cf. (De Falco
et al., 2002; Gabrys and Bargiela, 2001; Pedrycz et al.,
2002) in which this feature comes hand in hand with
the requirement of high accuracy and substantial predic-
tion capabilities. Overall, there are several general obser-
vations worth making with this respect

• software processes and products are human-centric
and do not adhere to any physical underpinnings. It
light of their origin, it is legitimate to focus on
logic-rich and transparent models,

• domain knowledge becomes an integral part of the
model especially in case of its availability and limited
availability of experimental data as well as substantial
variability of the software products and processes,

• interpretability of the developed models becomes an
important and highly desirable feature of models of
software artifacts which helps designer and manager
gain a better insight into the specificity of the partic-
ular model and derive conclusions. In a nutshell, the
geometry of the model (say a predictor or classifier)
needs to be easily comprehended by the user,

• software measures (metrics) (Garmus and Herron,
1996; Muller and Paulish, 1993; Munson and Khosh-
goftaar, 1996; Pedrycz et al., 2001) become essential
indicators of software quality (such as reliability,
maintenance effort, development cost, etc.). It be-
comes then essential to develop models that are easily
understood by the managing personnel and designers
and help look at possible scenarios and pursue any
detailed ‘‘what-if’’ considerations.

The geometry of the feature space imposed by the
classifier is also inherently associated with our ability
to interpret classification processes and comprehend
the decision boundaries produced by the classifier. In
general, these are nonlinear. In an ideal situation they
may coincide with those produced by a Bayesian classi-
fier (Duda and Hart, 1973). From the interpretation
point of view, the most intuitive ones are those built in
the form of boxes (in two-dimensional space) or hyper-
boxes (in multi-dimensional space), refer to Fig. 1.

Subsequently, when using boxes (and hyperboxes in
general), any classification rule becomes straightforward
and emerges as a result of enlisting of the edges of the
boxes:

assign (classify) pattern x 2 Rn to class x1 if x belongs to
one of the hyperboxes H1,H2, . . . ,Hc describing (localiz-
ing) patterns belonging to the class under interest.

The hyperbox classifier exhibits two interesting prop-
erties. First, the concept of the classifier is profoundly
simple. Potentially we can improve the classification rate
by moving to the higher level of detail and increasing the
number of the boxes while making them smaller and in
this way refining the classifier. Second, the classifier di-
rectly translates into a set if transparent rules (since each
box is a rule itself) whose condition parts assume a
straightforward interpretation. Note that a hyperbox
is just a Cartesian product of the intervals forming
its edges. The rules read as ‘‘if x is in Hi then x1’’,
i = 1,2, . . . ,c. Alternatively, we can allude to the edges
of the hyperbox and spell out a collection of the condi-
tions, that is ‘‘if x1 is in [a1,b1] and x2 is in [a2,b2] and . . .
and [an,bn] then xi’’. Owing to their interpretability,
hyperbox classifiers have been studied in the literature
quite intensively, cf. (Gabrys and Bargiela, 2001; Simp-
son, 1992; Simpson, 1993; Pedrycz et al., 2002). The
most popular approach to the design of these classifiers
is perhaps the one proposed by Simpson (1992, 1993)
where he discusses both supervised and unsupervised
mode of learning. What somewhat hampers the devel-
opment of the hyperbox classifiers is a lack of learning
algorithms which is not so surprising considering
the geometry of the classifiers (that do not come with
differentiable boundaries of the hyperboxes and in this
way are not suitable for gradient-based optimization
techniques).

The objective of this study is to develop a hybrid,
two-phase design of hyperbox classifiers and discuss
their essential role in analysis and classification of soft-
ware data. In the first phase of the design, we ‘‘seed’’
the hyperboxes by using fuzzy clustering in which de-
signed are the prototypes (centers) of the clusters. In
our case there play a role of seeds around which the
we start ‘‘growing’’ the boxes by expanding the size of
the box and pushing its walls further from the center.
This process is followed by the second phase in which
we ‘‘grow’’ the hyperboxes via genetic optimization.
This hybrid approach helps us capture the nature of

Fig. 1. Examples of hyperbox-based classifier formed in a two-
dimensional space; note a number of hyperboxes (boxes) formed there
and ‘‘covering’’ patterns (data) belonging to class x1 (dots). The
second class is denoted by small squares and its elements are excluded
from the hyperbox.
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