
Improving the performance of client Web object retrieval

Alexander P. Pons *

Computer Information Systems, University of Miami, 421 Jenkins Building, Coral Gables, FL 33146, USA

Received 25 April 2003; received in revised form 27 February 2004; accepted 29 February 2004

Available online 30 April 2004

Abstract

The growth of the Internet has generated Web pages that are rich in media and that incur significant rendering latency when

accessed through slow communication channels. The technique of Web-object prefetching can potentially expedite the presentation

of Web pages by utilizing the current Web page’s view time to acquire the Web objects of likely future Web pages. The performance

of the Web object prefetcher is contingent on the predictability of future Web pages and quickly determining which Web objects to

prefetch during the limited view time interval of the current Web page. The proposed Markov–Knapsack method uses an approach

that combines a Multi-Markov Web-application centric prefetch model with a Knapsack Web object selector to enhance Web page

rendering performance. The Markov Web page model ascertains the most likely next Web page set based on the current Web page

and the Web object Knapsack selector determines the premium Web objects to request from these Web pages. The results presented

in the paper show that the proposed methods can be effective in improving a Web browser cache-hit percentage while significantly

lowering Web page rendering latency.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Web prefetching; Markov model; Knapsack selector; Web application

1. Introduction

The majority of the Internet population accesses the

World Wide Web via dial-up modem connections.

Studies have shown that the limited modem bandwidth

is the main contributor to latency perceived by end

users. Today’s Web browsers employ a demand-fetch

technique in which Web page objects (graphics, pictures,

audio and/or video) are acquired only when the user
initiates a request for a page. When a browser navigates

to a Web Page, it checks to see whether the page and its

compositional objects are in the browser’s cache. If not,

these objects must then be retrieved from the origin or

proxy server. Since browser caches sizes are limited and

maintain the most recently accessed objects, it is likely

that the current page’s objects will have to be requested

from the origin server. This demand-fetching approach
typically increases a Web page’s rendering latency,

depending on the number and sizes of these objects and
the speed of the communication channel.

The concept of Web object prefetching has the po-

tential to expedite Web page rendering and increase

utilize the communication channel, since the process

makes use of the bandwidth that would otherwise be

idle. The operation of object prefetching is comple-

mentary to the technique of browser object caching. For

example, if a browser requests an object that is not in the
cache, but the object is in the prefetch area, the browser

avoids having to make a server request. Anticipating

which objects will be referenced in the near future has

been the focus of much recent research. In Pons (2002),

we introduced a Multi-Markov Web application centric

prefetching approach. In this paper we take our basic

model and augment it with an object selection technique

that extends our previous work to further improve
performance. We define and subsequently elaborate on

the Markov–Knapsack Prefetcher (MKP), which has

the following properties:

• An Initial Web-application Markov Model (IWAM)

is generated and downloaded to a client’s machine.

* Tel.: +1-305-284-1960; fax: +1-305-284-5161.

E-mail address: apons@miami.edu (A.P. Pons).

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2004.02.030

The Journal of Systems and Software 74 (2005) 303–311

www.elsevier.com/locate/jss

mail to: apons@miami.edu


The IWAM is a complete Web-application hyperlink

domain bounded model in which the hyperlinks are

the nodes and the edges are the transition frequency.

• During subsequent Web-application access the

IWAM is personalized into a Web-application Mar-

kov Model (WAM) for the client.
• An IWAM exists for each Web application and is

customized to a client’s Web-application access pat-

terns.

• The WAM predicts based the most likely next Web

page based on the currently viewed Web page and ac-

quires its objects during the idle communication

channel time.

• The Knapsack technique identifies from among these
probable Web page objects which one should be re-

trieved to minimize latency.

The remainder of this paper is organized as follows:

Section 2 reviews some important related work con-

cerning Web prefetching techniques. The Web-applica-

tion centric Markov–Knapsack prefetcher is discussed

in Section 3, and an example that highlights the ap-
proach is illustrated in Section 4. In Section 5, the

experiment design is introduced with performa-

nce comparison results explained in Section 6. Finally,

Section 7 provides a conclusion and suggests future re-

search directions.

2. Related work

In the literature many prefetching methods have been

proposed to predict the user’s next action, from subse-

quence matching that use past sequences of actions to

identify a possible next action for the current sequence,

to single and multi-step Markov and Markov-like

models that associate the possible next actions as states

with probabilities from the current state. Other ap-
proaches use utilize user characteristics such as book-

marks and history to determine the user’s behavior,

while some use Web page content and semantic link

information to make predictions for what will be re-

quested next. These proposed methods consist of the

following works.

Padmanabhan and Mogul (1996), Bestavros (1995,

1996) and Albrecht et al. (1999) proposed server-initi-
ated approaches where the Web server maintains a

Markov model of page request interdependency. These

approaches vary in the type of statistics and use of the

model to make predictions. In Padmanabhan, when a

client requests a page, the server sends along with the

page the names of the most likely subsequent accessed

pages, leaving the initiative for prefetching to the client.

Using trace-driven simulations, they achieved a 36%
reduction in network latency at a cost of 40% increase in

network traffic. They constructed the Markov model

using the number of client page accesses to compute the

weights. In Bestavros, a Time Markov model is used to

presend pages to the client based on the currently re-

quested page. The model is constructed from the

behavior patterns of the general user population and

selecting the presend page with the highest probability
of being requested next. Betavros’ trace-driven simula-

tions showed that with an increase of 10% in bandwidth,

a 23% reduction in page miss rate is possible. Albrecht

builds on the approach taken by Bestavros and con-

structs a hybrid prediction model, which combines four

Markov models and uses a decision-theoretic model for

presending pages.

Markatos and Chronaki (1998) combines a server’s
knowledge of its most popular pages, a Top-10 list of

pages with client access profiles. A client determines how

much and when items from the list are prefetched. Page

prefetching occurs off-line, with experimental results

suggesting that it manages to prefetch up to 60% of

future requests, with less than a 20% increase in traffic.

Hine et al. (1998) also combines client and server

information to perform page prefetching. They extend
the work done by Bestavros and define various client-

browsing modes based on the number of client accesses

to a server within a single client browsing session to

arrive at a prefetching scheme.

Fan et al. (1999) proposes a prediction algorithm

based on the Prediction by Partial Matching (PPM)

studied by Vitter and Krishnan (1996) that demonstrates

a relationship between data compression (Mogul et al.,
1997) and prediction. They construct an m-order

Markov and consider a prediction depth of more than

one. The model predicts not only the next page, but also

which pages will be requested after that. The m-order

predictor uses the context of the past m references to

predict the next set of prefetch pages for the client.

Results show that their technique reduces client latency

up to 23.4%.
Cunha and Jaccoud (1997) use a prefetch model that

focuses on the client being active in gathering usage

information and making prefetch decisions. The client

machine utilizes a Markov model with three types of

links that indicate the manner in which objects were

accessed. These links distinguish between objects ac-

cessed within a time window, objects embedded within

other objects, and objects that are likely to be accessed
close in time. Their approach uses a mathematical model

that combines link categorization and a Markov model,

which exceeds a hit rate of over 80% when the user’s

behavior fits the model. The experiments conducted by

Dunchamp (1999) indicate that a collaborative effort

between the client and server works best for accurate

prefetching. The server uses a Markov model built from

client data to dispense information to clients, allowing
them to perform prefetching according to their own

needs using different algorithms.

304 A.P. Pons / The Journal of Systems and Software 74 (2005) 303–311



Download English Version:

https://daneshyari.com/en/article/10349150

Download Persian Version:

https://daneshyari.com/article/10349150

Daneshyari.com

https://daneshyari.com/en/article/10349150
https://daneshyari.com/article/10349150
https://daneshyari.com

