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a b s t r a c t

The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas.
To solve these equations, massively parallel codes have been developed and run on present-day
supercomputers. This paper describes measures to improve the efficiency of such computations,
thereby making them more realistic. Explicit Runge–Kutta schemes are considered to be well suited
for time-stepping. Although the numerical algorithms are often highly optimized, performance can
still be improved by a suitable choice of the time-stepping scheme, based on the spectral analysis
of the underlying operator. Here, an operator splitting technique is introduced to combine first-order
Runge–Kutta–Chebychev schemes for the collision term with fourth-order schemes for the remaining
terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) E×B
advection term, an accurate and robust estimate for the nonlinear timestep is developed. The presented
techniques can reduce simulation times by factors of up to three in realistic cases. This substantial speedup
encourages the use of similar timestep optimized explicit schemes not only for the gyrokinetic equation,
but also for other applications with comparable properties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Gyrokinetic simulation codes are a common tool for obtaining
ab-initio predictions of turbulence properties in strongly magne-
tized high-temperature plasmas. [1,2] Such plasmas are present in
magnetic confinement fusion devices, and in astrophysics. Gyroki-
netic theory describes the time evolution of each species’ particle
distribution function f in five-dimensional phase space (one ve-
locity space variable, the gyro-angle, is averaged out). Obtaining a
solution of this nonlinear partial integro-differential equation gen-
erally requires high-performance computing. In the past decades,
gyrokinetic codes have become substantially more realistic by ap-
plying higher numerical resolution and by moving to more com-
prehensive physics models. For example, the effect of collisions is
formallyweak in dilute high-temperature plasmas and thus has of-
ten been neglected. Today, one realizes that including a suitable
collision operator in gyrokinetic turbulence is not only required
for a physically correct entropy balance, [3] but can also greatly
influence the turbulence level – through damping of zonal flows
– or even change the turbulence regime by modifying the growth
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rate of certain types ofmicroinstabilities [4–8]. Sincemore realistic
physics models require increased computational effort, progress is
enabled by the availability of more powerful computers and by the
use of advanced algorithms, the importance of the latter often be-
ing underestimated.

Three classes of gyrokinetic turbulence codes (particle-in-cell,
semi-Lagrangian, and Eulerian) exist. Here, the Eulerian approach,
which became popular approximately fifteen years ago, is consid-
ered. Several major code projects exist in this area, for instance
GENE [9–12], GS2 [13,14], GYRO [15,16], GKW [17], and AstroGK
[18]. The common basic procedure is the so-calledmethod of lines:
after discretizing phase space on a fixed grid, the resulting large
system of ordinary differential equations is evolved with a time
integration scheme. However, the choice of algorithms can dif-
fer substantially. Besides various possible choices for phase space
grids and the representation of derivatives on those grids, time dis-
cretization is performed in several ways; see Ref. [19] for a use-
ful overview. Operator splitting techniques for the collisional term
are used in GYRO, GS2 and AstroGK. Some codes (like GS2) even
choose to split off the nonlinear term from linear dynamics, while
others avoid splitting to treat these terms on an equal level. More-
over, implicit as well as explicit schemes are applied. While GS2
(and AstroGK) treat all linear terms implicitly, the GYRO algorithm
splits off fast linear terms (the parallel electron dynamics) in an
implicit–explicit (IMEX) fashion. Here, we focus on fully explicit
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time integration, as employed in GENE and GKW, for example. Ex-
plicit methods offer the advantages of an excellent performance on
massively parallel systems and the straightforward implementa-
tion of nonlinear terms. The drawback is a strict stability limit that
is set on the timestep ∆t , which depends on the fastest dynamics
in the system. A major advance from the gyrokinetic theory is to
analytically remove extremely fast timescales like compressional
Alfvénwaves or particle gyromotion, leaving only relevant dynam-
ics and enabling an explicit treatment. One of the fastest remain-
ing terms is then given by the (generalized) nonlinear drift velocity
vχ = Eχ ×B that combines electric andmagnetic field fluctuations.
When this nonlinear advection limits the timestep according to a
Courant–Friedrichs–Lewy (CFL) relation ∆t . ∆x/vχ [20], fully
explicit schemes are likely to be the more efficient choice (partic-
ularly in view of increasing problem size) [9].

It is sometimes stated that collisions require an implicit treat-
ment, since the explicit diffusive timestep limit would be too
strict [21]. However, we find severe restrictions only for rather
large collision frequencies (in the tokamak edge, for example) or
for very high velocity resolution. In this work, we introduce a split-
ting scheme involving Runge–Kutta–Chebychev (RKC) schemes
with extended real stability boundary [22,23], which enables
an explicit treatment of a sophisticated collision operator even
in these extreme cases. Partitioned RKC schemes have recently
been developed which are also stable for advective terms, involv-
ing, however, a larger number of operator evaluations per step
[24,25].

In principle, accuracy limits can also be imposed on the
timestep. In this context, we note that the overall numerical accu-
racy of gyrokinetic simulations is generally strongly restricted by
the grid resolution in five-dimensional phase space. A relative error
tolerance of approximately 10−3 is already considered to be suffi-
cient, even for linear simulations. Nonlinear simulations are sub-
ject to statistical errors of the order of 10%, underlining the fact that
long simulation times rather thanhighly accurate steps are needed.
In consequence, the use of low-order time integration schemes is
well justified to speed up computations.

In this paper, a detailed analysis of the spectral properties of the
discretized system allows us to identify a class of highly efficient
first-order explicit schemes (with largely extended stability
boundaries), which we apply to the gyrokinetic code GENE. The
remainder of this paper is organized as follows. The relevant
equations are summarized in Section 2 and timestep limiting
physics is discussed. In Section 3 we introduce relevant explicit
RK schemes and review their stability conditions. In Section 4,
the efficiency and accuracy of splitting techniques are discussed,
which allow time-stepping schemes to be tailored to the individual
parts of the operator. Finally, in Section 5 we address the timestep
restrictions in nonlinear simulations. We show that the Eχ × B
advection shifts the eigenvalues along the imaginary axis, which is
relevant for the stability limit. This observation forms the basis of a
greatly improved estimate of the nonlinear timestep. Overall, these
twomethods of (i) operator splitting and (ii) an improved timestep
estimate enhance the code efficiency by up to a factor of three in
realistic cases. Since the code was already highly optimized, this
speedup is significant.

2. The gyrokinetic equations

The gyrokinetic equation

∂tg = G[t, g] = N[χ̄ , g] + L[g] + C[g] (1)

describes the time evolution of the (modified) perturbed gyrocen-
ter distribution g for each plasma species in {x, y, z, v∥, µ} phase

space. The notation
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introduces the fluctuating potential χ̄ , consisting of electrostatic
perturbations φ̄1 and magnetic perturbations Ā1∥ and B̄1∥, where
the overbar denotes a gyroaverage. The gyrocenter distribution is
split into a background (Maxwellian) distribution F0 and a small
fluctuating part f . The background magnetic field is B0 and the
background density n0, temperature T0, thermal velocity vT =

(2T0/m)1/2, and particle massm are given for each plasma species.
The gyrokinetic version of Maxwell’s equations is used to compute
a self-consistent fluctuating potential from g , which closes the
system of equations. We refer to Refs. [2,10,12] for a detailed
description and derivation.

Eq. (1) is symbolically written as the sum of three integro-
differential operators whose physical meaning is briefly discussed
in the following. The linear terms L[g] contain parallel advection
along the magnetic field lines, as well as the perpendicular drifts
such as curvature and ∇B drifts, and temperature and density
gradient terms. The nonlinear termN[χ̄ , g] describes turbulent re-
distribution of free energy due to perpendicular Eχ × B advection,
where the generalized fluctuating field is defined as Eχ =

−∇χ̄ . Finally, the linearized Landau–Boltzmann collision operator
C[g] describes diffusion and dynamical friction in velocity space,
including back-reaction terms that ensure the conservation of
particles, momentum, and energy. Details of the implementation
of the collision operator in GENE can be found in Refs. [26,27].

For a numerical solution, Eq. (1) is discretized on a fixed grid
in phase space, where common techniques from computational
fluid dynamics, such as spectral methods, finite differencing,
finite element, and finite volume schemes, can be used. This
results in a large system of ordinary differential equations for
the time evolution of the state vector g . When non-dissipative
differencing schemes are employed, as is the case with the GENE
code, it may be necessary to add hyperdiffusion terms to L[g]
that remove unphysical grid-size oscillations in some phase space
directions [28,29].

One way of solving this space-discretized system is to perform
initial value computations, for which we consider Runge–Kutta
(RK) schemes here. In the nonlinear case, we desire to find a sta-
tistically stationary turbulent state. Linear initial value computa-
tions yield the fastest growing solution (sometimes referred to as
a mode), which constitute the driving force for plasma turbulence
and are thus of great interest. Typical growth rates and frequen-
cies are of the order of cs/Lref, where cs = (Te/mi)

1/2 denotes the
ion sound speed and Lref is a typicalmacroscopic scale length, often
set to the tokamak major radius. Additionally, the linearized sys-
tem can be formulated as an eigenvalue problem. In this context,
GENE features the use of optimized iterative algorithms provided
by the SLEPc package [30–34], which select a subset of eigenvec-
tor–eigenvalue pairs {gi, λi} that fulfill some user-specified crite-
ria. For convenience, we split the complex eigenvalue λ = γ + iω
into a growth rate γ and a frequency ω. The eigenvalues of largest
magnitude |λi| are quickly found (for example by Krylov–Schur
subspace iteration), which proves extremely useful for the exact
computation of themaximum stable timestep for initial value sim-
ulations. Due to the shape of the spectrum, obtaining the fastest
growing solution with SLEPc is more cumbersome, but can still
be faster than a corresponding initial value simulation. Moreover,
subdominant and marginally stable solutions only become acces-
sible by such eigenvalue computations. Finally, GENE can also
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