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a b s t r a c t

In statistical physics, the efficiency of tempering approaches strongly depends on ingredients such as
the number of replicas R, reliable determination of weight factors and the set of used temperatures,
TR = {T1, T2, . . . , TR}. For the simulated tempering (ST) in particular – useful due to its generality and
conceptual simplicity – the latter aspect (closely related to the actual R) may be a key issue in problems
displaying metastability and trapping in certain regions of the phase space. To determine TR’s leading to
accurate thermodynamics estimates and still trying to minimize the simulation computational time, here
a fixed exchange frequency scheme is considered for the ST. From the temperature of interest T1, succes-
sive T ’s are chosen so that the exchange frequency between any adjacent pair Tr and Tr+1 has a same value
f . By varying the f ’s and analyzing the TR’s through relatively inexpensive tests (e.g., time decay towards
the steady regime), an optimal situation inwhich the simulations visitmuch faster andmoreuniformly the
relevant portions of the phase space is determined. As illustrations, the proposal is applied to three lattice
models, BEG, Bell–Lavis, and Potts, in the hard case of extreme first-order phase transitions, always giving
very good results, even for R = 3. Also, comparisons with other protocols (constant entropy and arith-
metic progression) to choose the set TR are undertaken. The fixed exchange frequency method is found
to be consistently superior, specially for small R’s. Finally, distinct instances where the prescription could
be helpful (in second-order transitions and for the parallel tempering approach) are briefly discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Keystone in the study of statistical physics problems, numerical
methods are generally expected to fulfill two requirements: (i) first
(and surely the most important), to yield precise estimates for the
thermodynamical quantities analyzed; (ii) second, to be as simple
and as fast as possible in their implementations.

Nevertheless, often the mentioned two requisites strike out in
opposite directions. Indeed, consider, e.g., systems in the regime
of phase transitions whose distinct regions of the phase space are
separated by large free-energy barriers. This is a common situation
not only for complex problems like spin glasses, protein folding,
and biomolecules conformation [1–5], but also in lattice gas mod-
els displaying first-order phase transitions [6,7]. In all such exam-
ples theremay be the occurrence ofmetastability [6,7]. Thus, when
simulated, these systems can get trapped into local minima. Ways
to circumvent this technical difficulty should demandmore sophis-
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ticated evolution dynamics procedures and longer computational
times.

Different proposals like (a) cluster [8], (b) multicanonical [9],
(c) Wang–Landau [10], and (d) tempering [11,12], among others,
are relevant algorithms trying tomaintain a good balance between
features (i) and (ii) above. In particular, (d) above relies on the
straightforward idea of ‘‘heating up’’ the system to higher temper-
atures, so as to help it to cross the barriers at low temperatures.
Moreover, tempering methods have attracted large interest due to
their generality with a broad applicability [13].

There are two major formulations for the tempering approach,
namely, parallel (PT) [11] and simulated (ST) [12], where always
the start point is to choose a set of R distinct temperatures (with
Tr < Tr+1, r = 1, . . . , R − 1), TR = {T1, T2, . . . , TR}, in which T1
is the one of interest. In the PT, configurations from the distinct R
replicas (running in parallel) at the different T ’s are exchanged. For
the ST, a single realization undergoes many temperature changes
(among the T ’s in TR). Thus, the temperature itself is a dynamical
variable.

Each tempering implementation presents its own characteris-
tics and advantages, as recently discussed in detail in Ref. [14] (see
also the Refs. therein). In particular, although the ST has a higher
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probability than the PT to exchange temperature [15–18,14], it dis-
plays a less frequent tunneling between coexisting phases [14].
Hence, the ST requires large computational time for generating
uncorrelated configurations, thus a slower convergence to the
steady equilibrium. On the other hand, for proper estimates (at
least at first-order phase transition regimes) the PT needs non-
adjacent switch of temperatures, making the procedure a bit more
involving—an implementation not necessary for the ST.

Furthermore, for the hard to treat case of strong discontinu-
ous phase transitions, promising extensions for tempering meth-
ods have been proposed. In particular, the PT combined with
modified ensembles (as multiple Gaussians [19,20]) comprise the
so called generalized replica exchange approaches [21,22]. They
have been applied with great success to problems like solid–liquid
[23] and vapor–liquid transitions [24]. Also, enhancements for the
usual ST are possible. Examples are (a) to consider for it modi-
fied distributions [25], leading to very good results for both lat-
tice (e.g., Potts and Ising) and continuum (Lennard-Jones clusters)
models; and (b) besides T to assume another dynamical variable,
as the external field [26], quite helpful in dealing with crossovers
in 2D Ising systems.

Thus, it would be desirable to improve the efficiency of the ST
still preserving its positive aspects, notably the procedure simplic-
ity. As a hint to do so, the previous comments indicate that a central
point in the ST method is less the probability of a single attempt to
exchange temperatures Tr → Tr+n (with n = 1) and more the
overall frequency in which the different system phases are visited.
Therefore, one should try to optimize the set TR as a whole, in-
vestigating how the combination of the different transitionswould
speed up the convergence to the steady state (by a more uniform
sampling of the microscopic configurations).

For the ST we then propose here a rather direct protocol to se-
lect TR by means of a fixed exchange frequency (FEF) prescription.
Given R, it consists in determining the Tr ’s such that the exchange
frequency between any pair of adjacent temperatures is f . From
simple preliminary tests we verify if the obtained set leads to an
appropriate tunneling between coexisting phases. If this is not the
case, another value of f is chosen, a new TR is calculated, and the
tests repeated. With relatively low computational effort (see the
next section), we end up with a very efficient TR for the full simu-
lations. Through examples, we furthermore show that this optimal
TR works well for other values of the considered parameters and
not only for the specific values employed in the set derivation. The
same TR can also be used in the vicinity of the original parameters’
values as well as for other system sizes. Hence, in many applica-
tions TR needs to be determined just once. We compare the FEF
with other schemes to select the Tr ’s.We find that the present is not
only superior to more simple recipes (like arithmetic progressions
(AP)) but also to more physically oriented selection methods (like
the constant entropy (CE) [27,28]). We finally confirm a somehow
expected result (but not fully investigated in the literature) that the
exact distribution of temperatures in TR becomes less relevant as R
increases.

As illustrations, we address three distinct systems, thus exploit-
ing a relatively larger variety of first-order phase transition fea-
tures. One is the Potts model, an ideal case test. For large q’s, it
presents strong discontinuous transitions (the regime we shall fo-
cus on), whose temperatures are exactly known. The others are
the BEG and BL models, likewise interesting not only by displaying
more complex phase diagrams than the Potts (e.g., having phases
with distinct structural properties), but also for already being ex-
tensively analyzed through the PT and ST approaches [14,28,29].
Thus, all of them are nice examples to check for the reliability of
the proposed protocol.

The work is organized as the following. In Section 2 we review
the ST approach and how to characterize first-order phase tran-
sitions at low T ’s (the context we consider in this contribution).
We also discuss in full detail the FEF protocol. In Section 3 we ana-

lyze the BEG, Bell–Lavis (BL), and Potts lattice models. For the BEG
and BL we also compare the FEF results with those for two other
schemes (AP and CE) and illustrate the methods’ performance de-
pendence on the number of replicas R. Lastly, we present final re-
marks and conclusion in Section 4.

2. The method details

In general, for systems displaying first-order transitions at low
temperatures or with a large jump in the order parameter [30],
the distinct coexisting phases are separated by large free-energy
barriers, exhibiting trapping and metastable states. Hence, such
cases are interesting instances to test the proposed scheme. So,
next we first give a brief account of the ST method and discuss
an appropriate way to analyze strong first-order phase transitions.
Then, we pass to describe a FEF procedure for the ST method.

2.1. The simulated tempering (ST)

The ST follows a twofold procedure. First, at a certain Tr (and
during a given number of MC steps, defined as the number of
lattice sites), a standard Metropolis prescription evolves a system
of Hamiltonian H throughout the phase space microstates {σ }.
Second, an attempt for the change Tr ′ → Tr ′′ (with r ′, r ′′

=

1, 2, . . . , R; βr = 1/(kB Tr); and σ the system state at the attempt
time step) is drawn from

pr ′→r ′′ = min{1, exp[(βr ′ − βr ′′)H(σ ) + (gr ′′ − gr ′)]}. (1)

This scheme is repeated a large enough number of times.1 Also, we
consider only adjacent exchanges, i.e., ∆r = |r ′′

− r ′
| = 1.

According to Eq. (1), the transition probability pr ′→r ′′ strongly
depends on the temperatures difference. Larger βr ′ − βr ′′ leads to
lower acceptance probabilities, whereas lower βr ′ − βr ′′ , although
enhancing the exchanges, may not be efficient since the generated
configurations at Tr ′′ in general will be similar to those at Tr ′ .
Therefore, conceivably there is a compromise between opposite
factors, implying the existence of a best set TR.

Finally, we comment that in some ST implementations, the cor-
rect weights gr = βr fr (with fr the free energy) – whose role is
to ensure a uniform visit to the distinct T ’s – are approximated
[15,32]. For our examples, we obtain the g ’s exactly by means
of the approach in Refs. [33,29]. In short (full details in Refs.
[33,14,29,34]), suppose a lattice model composed of K layers of
L sites each. The total number of sites (or the volume) is then
V = L × K . Also, assume the full Hamiltonian written in terms
of these layers as

H =

K
k=1

H(Sk, Sk+1), (2)

where Sk ≡ (σ1,k, σ2,k, . . . , σL,k) denotes the kth layer state config-
uration and SK+1 = S1 (periodic boundary conditions). The transfer
matrix T is defined in such away that its elements are T(Sk, Sk+1) =

exp[−βH(Sk, Sk+1)]. Thus, in the thermodynamic limit (achieved
already at relatively small V ’s [29]) fr = − ln[λ(r)

]/(βrL), with

λ(r)
=

⟨T(Sk, Sk+1 = Sk)⟩
⟨δSk,Sk+1⟩


β=βr

. (3)

1 The appropriate number of MC steps, necessary to ensure a correct sampling,
may depend on distinct features [31], such as the system temperature and size,
the phase space ‘‘complexity’’, etc. Since there is no standard and direct procedure
to find it, a rough estimation of such a time can be obtained by studying the time
convergence τ of the order parameter towards the steady value (say, starting from
a fully ordered configuration). Thus, throughout this work, from simple simulations
we obtain τ and then take as our number of MC steps 10 × τ (detailed discussions
in Section 3).
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