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a b s t r a c t

This paper investigates a class of algorithms for numerical integration of a function in d dimensions over a
compact domain byMonte Carlomethods.We construct a histogram approximation to the function using
a partition of the integration domain into a set of bins specified by someparameters.We then consider two
adaptations: the first is to subtract the histogram approximation, whose integral we may easily evaluate
explicitly, from the function and integrate the difference using Monte Carlo; the second is to modify the
bin parameters in order to make the variance of the Monte Carlo estimate of the integral the same for all
bins. This allows us to use Student’s t-test as a trigger for rebinning, which we claim is more stable than
the χ2 test that is commonly used for this purpose. We provide a program that we have used to study the
algorithm for the case where the histogram is represented as a product of one-dimensional histograms.
We discuss the assumptions and approximations made, as well as giving a pedagogical discussion of the
myriad ways in which the results of any such Monte Carlo integration program can be misleading.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in evaluating the integral of a function f : Rd

→ R over a compact domain. It is a simplematter tomap any com-
pact domain into the unit hypercube, so we need to evaluate

I =


[0,1]d

dx f (x) =

 1

0
dx1 · · ·

 1

0
dxd f (x1, . . . , xd).

I is just the average value of f over a uniform probability distri-
bution which vanishes outside the unit hypercube; we denote this
average value by ⟨f ⟩.

Defining the sample average f̄ over a set of N uniformly dis-
tributed random points {x(i)

∈ [0, 1]d, i = 1, . . . , d} to be

f̄ ≡
1
N

N
i=1

f (x(i)) (1)

the weak law of large numbers [1] allows the identification ⟨f ⟩ =

limN→∞ f̄ assuming only that the integral exists. Strictly speaking
the weak law of large numbers states that, with probability arbi-
trarily close to one, f̄ will become arbitrarily close to ⟨f ⟩ for suffi-
ciently large N .
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The central limit theorem makes the stronger statement that
the probability distribution of f̄ tends to a Gaussian with mean ⟨f ⟩
and variance V/N ,

⟨f ⟩ = f̄ + O


V
N


(2)

where the variance of the distribution of f values is

V ≡


f − ⟨f ⟩

2
=


[0,1]d

dx

f (x) − ⟨f ⟩

2
= ⟨f 2⟩ − ⟨f ⟩2,

but it requires stronger assumptions that we shall discuss shortly.
An unbiased estimate of the variance is given by

V̂ ≡
f 2 − f̄ 2

N − 1
, ⟨V̂ ⟩ = V ,

where of course

f 2 =
1
N

N
i=1

f (x(i))2.

The estimate of the integral f̄ is within one standard deviation
σ ≡

√
V/N of the true value I = ⟨f ⟩ about 68% of the time.

Note that the error is proportional to 1/
√
N independent of the

dimension d of the integral. From this fact stems the great utility
of Monte Carlo for integration in many dimensions compared to
numerical quadrature. Generally for numerical quadrature (trape-
zoid rule, Simpson’s rule, etc.) the error is O(∆k) where ∆ is the
grid spacing and k−1 is the degree of the polynomial interpolation
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between the grid points. With a fixed budget of function evalua-
tions N on a regular grid each axis must be divided into d√N seg-
ments. So ∆ ∝ N−1/d and thus the error is O(N−k/d); therefore in
dimension d > 2k the Monte Carlo error scales better. An intuitive
explanation for this is that a random sample is more homogeneous
than a regular grid [2].

1.1. Singular integrands

If the integrand has a singularity within or on the boundary of
the integration region extra care is required. Let us consider the
proof of the central limit theorem. The probability distribution Pf
for the values F = f (x) when x is chosen from the distribution P is

Pf (F) ≡


dx P(x) δ


F − f (x)


(3)

for which
dF Pf (F) =


dx P(x) = 1 and

dF Pf (F) F =


dx P(x) f (x) = ⟨f ⟩.

We define the generating function for connected moments as the
logarithm of the Fourier transform of Pf

Wf (ik) ≡ ln


dF Pf (F)eikF = ln


dx P(x)eikf (x) = ln⟨eikf ⟩. (4)

Assuming that (4) can be expanded in an asymptotic series

Wf (k) ∼

∞
m=1

kmCm

m!
(5)

where coefficients Cm (cumulants)

C0 = 1
C1 = ⟨f ⟩

C2 = V =


f − ⟨f ⟩

2
C3 =


f − ⟨f ⟩

3
C4 =


f − ⟨f ⟩

4
− 3C2

C5 =


f − ⟨f ⟩

5
− 10C3C2

C6 =


f − ⟨f ⟩

6
− 15C4C2 − 10C2

3 − 15C2
2

...

are all finite. We consider the distribution function Pf̄ for the sam-
ple average f̄ defined in Eq. (1)

Pf̄ (F) =


dx(1)

· · · dx(N) P(x(1)) · · · P(x(N))

× δ


F −

1
N

N
i=1

f (x(i))


and the corresponding generating functionWf̄

Wf̄ (k) ≡ ln


dF Pf̄ (F) eikF . (6)

Since the points x(i) were chosen independently, Eq. (6) factorises
to give

Wf̄ (k) ∼ ln


dx P(x)eikf (x)/N
N

= NWf


k
N


,

which can be expanded as an asymptotic series in powers of 1/N

Wf̄ (k) ∼

∞
m=1

kmCm

Nm−1m!
= kC1 +

k2C2

2N
+

k3C3

6N2
+ O


1
N3


.

Ignoring terms ofO(N−2) and taking the inverse Fourier transform
gives

Pf̄ (F) =

exp


−(F−⟨f ⟩)2

2V/N


√
2πV/N

,

namely a Gaussian with mean ⟨f ⟩ and variance V/N .
However, if any of the cumulants Cn are not finite then the ex-

pansion (5) is not meaningful. A simple class of integrals with di-
vergent higher moments is

 1
0 dx xα with α < 0. If −1 < α < 0

this integral iswell-defined but has an infinite number of divergent
moments. Following Eq. (3)

P(y) =

 1

ϵ

dx
δ(y − xα)

1 − ϵ
=

y
1
α −1

α(1 − ϵ)

for y ∈ [ϵα, 1], and zero elsewhere. The cumulants are combina-
tions of the moments

dy P(y)yn =
1 − ϵ1+αn

(1 − ϵ)(1 + nα)

which diverge as ϵ → 0 if 1 + αn ≤ 0, or equivalently every cu-
mulant Cn with n > −1/α diverges. What this means in practice is
that although estimating such integrals by Monte Carlo is allowed
– theweak lawof large numbers assures us that as long asN is large
enough the estimatewill converge but it gives no indication of how
large N should be – it is misleading to estimate the error from the
variance alone. This is because the distribution of the estimates of
the integral is not Gaussian even if the variance exists. In practice
one obtains non-Gaussian distributions with ‘‘fat tails’’; for some
examples see Fig. 1.

We may also observe that a singularity in the integrand does
not necessarily lead to infinite cumulants: for the function f (x) =

− ln x a similar analysis to that given above shows that Pf (F) = e−F

for F ∈ [0, ∞) and hence ⟨f m⟩ = m! so all its cumulants are finite,
and therefore the Monte Carlo estimates of the integral do have a
Gaussian distribution as the number of samples N → ∞.

For all convergent integrals Monte Carlo provides an estimate
of the mean. However, if any moment diverges the distribution
of the means is not Gaussian, and in general even if the variance
exists it gives an underestimate of the ‘‘width’’ of the probability
distribution. This is often the case in practice, for example when
evaluating Feynman parameter integrals which are integrable but
not square integrable. If the Monte Carlo integrator is treated as a
black box the quoted error from the standard deviation will often
be an underestimate of the true error. With these provisos on the
applicability of Monte Carlo integration we now turn to our main
topic, a new method of adaptive Monte Carlo integration.

2. Variance reduction

The Monte Carlo scheme of Section 1 (naïve Monte Carlo) can
be improved by variance reduction schemes [3,4]: the basic idea is
to use some information about the integral in order to reduce the
variance sample average. We describe two methods: importance
sampling and subtraction.
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