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a b s t r a c t

Parametrized surrogate models are used in alloy modeling to quickly obtain otherwise expensive prop-
erties such as quantum mechanical energies, and thereafter used to optimize, or simply compute, some
alloy quantity of interest, e.g., a phase transition, subject to given constraints. Once learned on a data set,
the surrogate can compute alloy properties fast, but with an increased uncertainty compared to the com-
puter code. This uncertainty propagates to the quantity of interest and in this work we seek to quantify it.
Furthermore, since the alloy property is expensive to compute, we only have available a limited amount of
data fromwhich the surrogate is to be learned. Thus, limited data further increases the uncertainties in the
quantity of interest, and we show how to capture this as well. We cannot, and should not, trust the surro-
gate before we quantify the uncertainties in the application at hand. Therefore, in this work we develop a
fully Bayesian framework for quantifying the uncertainties in alloy quantities of interest, originating from
replacing the expensive computer code with the fast surrogate, and from limited data. We consider a par-
ticular surrogate popular in alloymodeling, the cluster expansion, and aim toquantify howwell it captures
quantum mechanical energies. Our framework is applicable to other surrogates and alloy properties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the present work, we aim to develop a Bayesian framework
for quantifying the uncertainty in alloy modeling when using fast
parametrized surrogates in place of an expensive computer code.
In the most typical setup, the surrogate is learned from some data
set, e.g., quantum mechanical energies, and then used to predict
some quantity of interest (QI), which could be a ground state line,
a phase transition, or some optimal structure (e.g., lowest ther-
mal conductivity in the case where the data are instead thermal
conductivities). Of course, the parametrization we choose for the
surrogate depends on what data we obtain from the computer
code. Since the code is expensive, we only have available a lim-
ited amount of data. Furthermore, we require the surrogates to be
computationally cheap. Thismeans that, e.g., if the surrogate is rep-
resented by a set of basis functions, we are not in liberty to include
an arbitrarily large number of such basis functions. The particular
surrogate we consider later is such an example. These restrictions
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on the surrogate mean that, when it is parametrized, we do not
know a priori the best parametrization. We have to learn it from
a set of multiple candidate parametrizations, a pool of candidates,
each candidate, from a Bayesian perspective, consistent with the
observed limited amount of data. A single value of the QI is com-
puted from a single surrogate candidate. Since there may be mul-
tiple candidates, there may also be multiple values for the same
QI. Our uncertainty about the best surrogate candidate has thus
propagated to the QI. This is the first source of uncertainty we aim
to capture in the present work. From now on, we will simply say
parametrization to mean surrogate parametrization/candidate.

Notice also that the effect of limited data enters implicitly
through our belief about the best parametrization pool to choose.
For example, upon seeing data set D1 it might be that the pool of
parametrizations t1 is better than another pool t2. But ifwenowob-
serve more data, it could very well be that our opinion is reversed,
thus choosing t2 over t1. The fewer data points we have, the worse,
and generally larger, our pool of parametrizations consistent with
the datawill be, unless, of course, our prior belief is already sharply
tuned to a good pool of parametrizations. However, this is rarely
the case, and in by far the most cases we benefit from observing
data. From this, it should be clear that the limited data plays a role
in our knowledge about the best pool of parametrizations to use.
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The fact that we only see a limited amount of data therefore intro-
duces a second source of uncertainty (not independent of the first
one though) in the QI, and we will be able to capture this as well.

Our developed methods are independent of the particular sur-
rogate employed, but we will focus on a very popular choice in
materials science: the cluster expansion [1]. The cluster expansion
expands the alloy property in basis functions with associated ex-
pansion coefficients called effective cluster interactions (ECI) [2]. It
is useful in capturing properties, which depend on the particular
atomic arrangement on the lattice, this arrangement being called
a configuration. It has been used to describe quantum mechanical
energies, thermal conductivities, band gaps [3], etc., of a multitude
of alloys. The ECI are obtained by fitting the cluster expansion to a
data set. The cluster expansion surrogate is uniquely given once the
ECI are specified, so we will consider a surrogate parametrization
as being synonymous with ECI. Although the cluster expansion is
exact when untruncated, in practice one needs to make a trunca-
tion choice and estimate the ECI from a pool of parametrizations, as
discussed earlier.We reiterate that this introduces uncertainties in
the QI predicted by the cluster expansion. Although an important
question to ask, the sizes of these uncertainties have remained un-
knownuntil now.We employ a fully Bayesian approach to quantify
these uncertainties.

We should mention that non-Bayesian methods have been
applied in some works to quantify the uncertainty in QI’s, but we
believe that they should be avoided for uncertainty propagation.
In particular, there is no rigorous framework for propagating
uncertainties through parametrized surrogates, such as the cluster
expansion, to the QI in non-Bayesian frameworks [4,5].

In beginning our Bayesian approach, we need to be clear about
what we mean by probability. We interpret probability as a rea-
sonable degree of belief [6,7] as opposed to a frequency of some
(hypothetical) long-run experiment. The sum and product rules of
probability theory then tell us how to manipulate degrees of belief
in a rigorous way. From this view of probability, the Bayes theo-
rem follows and can be used to change our knowledge when ob-
serving new data in a given problem [8,6]. This is collectively what
is called Bayesian probability theory. We will use a Bayesian ap-
proach to introduce a model describing our belief about the best
set of ECI with emphasis on sparsity. We include the sparsity fea-
ture because alloy properties are expected to be sparsely repre-
sentable, based on physical arguments [9]. A very successful sparse
regression method, from the non-Bayesian literature, is the least
absolute shrinkage and selection operator method (LASSO), which
is an L1-constrained least squaresmethod [10]. It can be shown that
LASSO has a Bayesian interpretation. It corresponds to the poste-
rior mode when the parameters to be learned have independent
Laplace distributions as priors [11]. The above information about
LASSO will be used to choose Laplace distributed priors in Sec-
tion 2.4. The Bayesian posterior distribution (posterior) contains
the information needed to rigorously quantify the QI uncertainties.
In our case, the posterior attains a shape allowing it to be sum-
marized via the 95% highest posterior density confidence interval
(HPD)—the smallest region containing at least 95% of the posterior
mass. We will reduce the effects of other uncertainties as much as
possible and discuss this as we go along.

We employ our framework to two real binary alloy systems.
First, we consider body-centered-cubic (bcc) magnesium–lithium
(Mg–Li) and let the QI be its ground state line. Then, we turn to di-
amond silicon–germanium (Si–Ge) and present a computationally
more involved example where the QI is the transition temperature
of the disordered to two-phase-coexistence at 50% composition.

The paper is organized as follows. We start out with a general
introduction to uncertainty quantification and present our frame-
work in Sections 2.1 and 2.2. In Section 2.3 we discuss where and
how the cluster expansion enters the scene. Then, in Section 2.4,we

present a Bayesianmethod for describing the ECIwith emphasis on
sparsity. This posterior will not be in closed form for its intended
use sowe showhow samples are drawn from it usingMCMCmeth-
ods in Section 2.5. Having developed the framework we turn to
case studies first discussing uncertainty quantification in theMg–Li
ground state line in Section 2.6, followed by the uncertainty quan-
tification of an Si–Ge phase transition in Section 2.7. Results from
carrying out these are presented in Section 4 and a corresponding
discussion follows in Section 5. The paper is concluded in Section 6.

2. Uncertainty quantification

2.1. Background

In this section we introduce the methods used to quantify the
uncertainty in the QI making no assumption about the form of
parametrization of the response surface. Then, in the following sec-
tion, we show how the cluster expansion makes this parametriza-
tion. Independent of the choice of surrogate model we will need
data to make the best possible choice of parametrization. There-
fore, we first discuss assumptions about the computer code used
to obtain the data. Then, we introduce the central element in this
work: an operator which acts on the surrogate to produce the QI,
and show how it is used to summarize the present uncertainty
quantification task in a single equation, given certain assumptions.

The data acquisition takes place by supplying a set of alloy con-
figurations as input to an expensive computer code, e.g., VASP
[12–18] or LAMMPS [19], and obtain a set of corresponding prop-
erty values as output which collectively form the response sur-
face. This could be quantum mechanical energies per atom or
thermal conductivity, respectively. We view the computer code as
a function f (·) mapping some input structure, with configuration
denoted as σ, to a response y. We do not know f (·) and we are
most often not interested in it per se, but rather some function of
this—the QI. Therefore, we define an operator I[·] taking as input a
response surface and returning the QI which can generally be rep-
resented by a set of real numbers. As an example, we can let it re-
turn the structure at the global minimum of the surface:

I[f (·)] = arg min
i

f (σ i),

or the convex hull of formation energies:

I[f (·)]

=


j

λj∆f (σ j) : λj ≥ 0 for all j and


j

λj = 1


, (1)

where ∆f (σ j) is the formation energy of structure j (dependent
on f (σ j)) defined later in Eq. (13) but with E(σ j) replacing f (σ j).
Another example, related to the convex hull, is the ground state
line. The QI can also be more complicated such as a transition
temperature. The computer code has inherent approximations. For
example, VASP approximates the exchange–correlation term in
density functional theory (DFT), implements a particular k-point
integration scheme [20], and a pseudopotential to approximate the
true potential [21], etc., all inducing uncertainties in the output.
We assume, however, that such uncertainties are small when com-
pared to those arising from not knowing how to choose the sur-
rogate parametrization, and from having observed only a limited
amount of data. The presence of code uncertainties means that we
do not actually observe the theoretical f (σ i) of structure i. Never-
theless, we will make the assumption that we do observe f (·), but
with added Gaussianmeasurement noise. Call this noisy version of
the code yi. We show in Section 2.4 how the noise can be estimated
in the current framework. Incidentally, this does notmeanwe com-
mit to the noise source necessarily being Gaussian itself, but rather
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