
Computer Physics Communications 184 (2013) 1150–1154

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Accelerating modified Shepard interpolated potential energy
calculations using graphics processing units
Hong Fu, Limin Zheng, Minghui Yang ∗

Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic
Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 18 September 2012
Received in revised form
5 December 2012
Accepted 8 December 2012
Available online 14 December 2012

Keywords:
Graphics processing unit acceleration
Chemical reactive dynamics
Potential energy surface
Modified Shepard interpolation scheme

a b s t r a c t

The potential energy surfaces constructed with the modified Shepard interpolation scheme have been
widely used in studies of chemical reaction dynamics. However, computational costs of interpolation
increase rapidly with the size of the system and the number of data points needed to achieve a given
accuracy. In this work, we present a naive Graphics Processing Unit (GPU)-accelerated algorithm for
modified Shepard interpolated potential energy calculations and its implementation with the PGI CUDA
Fortran language. The benchmark tests on a NVIDIA Tesla C2050 using four interpolated potential energy
surfaces (one for H+H2O ↔ H2 +OH, two for H+NH3 ↔ H2 +NH2 and one for H+ CH4 ↔ H2 + CH3)
demonstrated a speedup of 50-fold over the original CPU implementation on an Intel E5620 processor and
the speedup increaseswith the system size and the number of data points. Thiswork presents a promising
GPU application in the field of chemical reaction dynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphics processing units (GPUs) are designed for acceleration
in image building in a frame buffer in order to address the
demands of real-time high-resolution 3D graphics computational-
intensive tasks. The highly parallel multi-core structure of GPUs
makes them very effective to process large blocks of data in
parallel. Recently, the graphics cardmanufacturer NVIDIA released
the ‘‘compute unified device architecture’’ (CUDA) development
toolkit for high-end graphics cards. CUDA allows developers to
program in a C-like language and to take full advantage of NVIDIA’s
accelerator so that the complexity for using a GPU in general-
purpose scientific computing is reduced substantially. Nowadays,
the GPU has emerged as a popular platform for high performance
computing in many different areas [1].

One of the main applications of GPU in computational chem-
istry is molecular dynamics (MD) simulations which describe the
motions of atoms in bio-molecules or complex molecular systems
by solving Newton’s second law of motion and provide important
information on dynamics and thermodynamics properties [2–11].
One of themain challenges ofMDsimulations is that the simulation
time should be long enough to sample most important conforma-
tion spaces. GPUs provide an economical means to accelerate MD
simulations [2,6]. As a result, many of the mainstream MD simu-
lation software packages (Amber [11], Gromacs [12], NAMD [13],

∗ Corresponding author. Tel.: +86 27 87197783; fax: +86 027 87199291.
E-mail address: yangmh@wipm.ac.cn (M. Yang).

LAMMPS [4], etc.) have incorporated GPU acceleration and some
new software packages such as HOOMD-Blue [14] and ACEMD [2]
have been developed especially on GPU architecture. Recently,
Pande and coworkers have released the OpenMM library of GPU
kernels for MD simulations [15]. So far, GPU acceleration has been
demonstrated to achieve speedups from around 10 to 100 for MD
simulations [13].

Another important application of GPUs is quantum chem-
istry [16–29]. The first application in this area is the GPU im-
plementation of the Quantum Monte Carlo method by Anderson
and coworkers [18]. Afterwards, Yasuda reported GPU applica-
tions to accelerate two-electron integral evaluation (10× speedup)
and density functional calculations [19]. Martinez and cowork-
ers have implemented a GPU algorithm for two-electron integrals
(with a 130× speedup), direct self-consistent field calculations
(with speedups ranging from 28× to 650×), analytical energy gra-
dients, geometry optimization and first principles molecular dy-
namics on GPU [16,17]. They also released ‘‘TeraChem’’—the first
general-purpose quantum chemistry software package [20–22].
Others include Asadchev and coworkers who implemented the
two-electron integral calculations up to G functions on GPUs [23],
and Luigi Genovese et al. who implemented the GPU accelerating
code based onBigDFT and achieved a speedup factor of 6 [24].More
recently, efforts have also been made to accelerate electronic cor-
relation calculations [25–29].

In this work, GPU acceleration is applied to the field of chemi-
cal reaction dynamics in which the nuclear motion in a molecular
system is solved quantum mechanically (e.g. the time-dependent

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.12.005

http://dx.doi.org/10.1016/j.cpc.2012.12.005
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:yangmh@wipm.ac.cn
http://dx.doi.org/10.1016/j.cpc.2012.12.005


H. Fu et al. / Computer Physics Communications 184 (2013) 1150–1154 1151

wave-packet quantum dynamics method) or classical mechan-
ically (e.g. the quasi-classical trajectory method) under the
Born–Oppenheimer approximation. The concept of potential en-
ergy surface (PES) is introduced to describe the relation between
energy and geometry of the system. As the number of geometries
needed to construct an accurate PES increases exponentially with
the size of the system, the computational costs for ab initio calcu-
lations and validation of the PES also increase rapidly. In fact, the
number of geometries denoted as ‘‘grid points’’ in quantum dy-
namics calculations for the potential integral is often much larger
than the number of expansion coefficients of wavefunctions in a
basis. For example, the number of grid points exceeds 3.1 × 1010

in full-dimensional quantum dynamics studies of the H + NH3 re-
action, whereas the number of expansion coefficients is 3.9× 109,
resulting in a dramatic increase of computational costs.

The PES could be generated with various methods, includ-
ing analytic functional fitting [30,31], spline interpolation [32],
modified Shepard interpolation [33], interpolating moving least
squares [34], and neural networks [35]. In this work, the GPU ac-
celeration is applied to themodified Shepard interpolation scheme
developed by Collins and coworkers [33,36–38]. This scheme cal-
culates potential energy from ab initio energies and energy deriva-
tives of known points in the PES data set and produces these points
with the aid of classical trajectory simulations of reaction dynam-
ics. Crittenden and Jordan have summarized the desirable proper-
ties of themodified Shepard interpolation scheme: it has relatively
low costs in computation and exactly reproduces the original ab
initio data, and can be applied to a large range of chemical prob-
lems [39]. However, because the potential energy of an arbitrary
configuration is expressed as a weighted average of Taylor series
expansions about the points in the PES data set, the computational
costs scale linearly with the points in the PES data set and expo-
nentiallywith the size of the system. As a result, the computational
costs of the potential energy calculation with the modified Shep-
ard interpolation scheme is usually much larger than that with an
analytic potential energy function.

In this work, we present a GPU-based implementation of the
modified Shepard interpolation scheme and show that this GPU
acceleration could be useful for the development or evaluation
of the interpolated PES and in the studies of chemical reaction
dynamics.

2. The modified Shepard interpolation scheme and CPU/GPU
algorithms

Because details of the modified Shepard interpolation scheme
have been described in many publications [33,36–39], this scheme
together with its CPU algorithm will be introduced briefly in
the first subsection. In the next two subsections, we present the
GPU algorithms for the exact implementation and an approximate
implementation of the interpolation scheme. For simplicity, the
molecular configuration whose potential energy to be calculated
is denoted as the ‘‘grid point’’ and is distinguished from the
‘‘data point’’ defined in the PES data set. The term ‘‘grid point’’
comes from the grids defined in the quantum reaction dynamics
calculations, although theGPUalgorithmpresented here could also
be applied in quasi-classical trajectory (QCT) calculations.

2.1. The interpolation scheme and CPU algorithm

For an arbitrary grid point, its energy is expressed as aweighted
average of Taylor series expansions of data points in the PES data
set:

V (Z) =

ndata∗ngroup
i=1

wi(Z)Ti(Z), (1)

where ndata is the number of original ab initio data points in the
PES. By applying the molecular symmetry group elements to the
original data points, the total number of data points used in the
interpolation is ndata ∗ ngroup, where ngroup is the number of
elements in the symmetry group. Z = {Z(X)} are the interpolation
coordinates and X is the 3× natom Cartesian coordinates of atoms
in the molecule. Because the bond lengths are the smallest set
of invariants that can give a global description of the molecular
structure and their inverses were found to result in more accurate
Taylor expansions for bond stretching potential functions, the PES
is constructed with inverse inter-atomic distance coordinates in
Collins’ modified Shepard interpolation scheme,

Z = {1/Rl} (l = 1, . . . , nbond), (2)

here nbond = natom × (natom − 1)/2. T (Z, i) is the second-order
Taylor expansion about the near data point Z(X(i)),

Ti(Z) = V |Z(i) +

nbond
l=1

∂V
∂Zl


Z(i)

[Z − Zl(i)]

+
1
2

nbond
k=1

nbond
l=1

∂2V
∂Zk∂Zl


Z(i)

[Z − Zk(i)][Z − Zl(i)] (3)

vi(Z) and wi(Z) represent the weight and relative weight of grid
point Z with respect to the i-th data point, respectively,

wi(Z) =
vi(Z)

vtot(Z)
(4)

and vtot(Z) is the summation of the weights

vtot(Z) =

ndata∗ngroup
j

vj(Z). (5)

In practical calculations, only the data points with relative weights
larger than the tolerance wtol are used in the Taylor expansions
and the number of these data points is denoted as nforc ,

V (Z) =

nforc
i=1

wi(Z)Ti(Z). (6)

However, the selection of data points by their relative weights
also introduces discontinuities in the PES, as discussed in Jordan’s
work [40].

Usually a two-part weight function is used with parameters
p = 2 and q = 12 [41],

vi(Z) =
1

nbond
l


Zl−Zl(i)
dl(i)

2
p

+


nbond

l


Zl−Zl(i)
dl(i)

2
q (7)

dl(i) is the confidence length of l-th coordinates for the i-th data
point and is viewed as an accuracy estimate of the Taylor expansion
in each coordinate direction.

The inverse inter-atomic distance coordinate system is a
redundant set of coordinates as there are only nint = 3 ×

natom − 6 independent internal coordinates. Thus a set of nint
internal coordinates ζ could be constructed as linear combinations
of Z for each data point in the PES data set. Also, the nint local
internal coordinates of grid points could be expressed as linear
combinations of Z , if it is sufficiently close to some data point
Z0

= Z(X0)

ζ X0(X) = UTZ . (8)



Download	English	Version:

https://daneshyari.com/en/article/10349590

Download	Persian	Version:

https://daneshyari.com/article/10349590

Daneshyari.com

https://daneshyari.com/en/article/10349590
https://daneshyari.com/article/10349590
https://daneshyari.com/

