
Computer Physics Communications 184 (2013) 1155–1160

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Scaling properties of a parallel implementation of the multicanonical
algorithm
Johannes Zierenberg ∗, Martin Marenz, Wolfhard Janke
Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, D-04009 Leipzig, Germany

a r t i c l e i n f o

Article history:
Received 18 July 2012
Received in revised form
6 December 2012
Accepted 7 December 2012
Available online 14 December 2012

Keywords:
Parallel
Multicanonical
Ising
Potts

a b s t r a c t

The multicanonical method has been proven powerful for statistical investigations of lattice and off-
lattice systems throughout the last two decades. We discuss an intuitive but very efficient parallel
implementation of this algorithm and analyze its scaling properties for discrete energy systems, namely
the Ising model and the 8-state Potts model. The parallelization relies on independent equilibrium
simulations in each iteration with identical weights, merging their statistics in order to obtain estimates
for the successive weights. With good care, this allows faster investigations of large systems, because it
distributes the time-consumingweight-iteration procedure and allows parallel production runs.We show
that the parallel implementation scales verywell for the simple Isingmodel, while the performance of the
8-state Potts model, which exhibits a first-order phase transition, is limited due to emerging barriers and
the resulting large integrated autocorrelation times. The quality of estimates in parallel production runs
remains of the same order at the same statistical cost.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Monte Carlo simulations are an important tool to investigate a
wide range of theoretical models with respect to their statistical
properties such as phase transitions, structure formation andmore.
Throughout the last two decades, umbrella sampling algorithms
like the multicanonical [1,2] or the Wang–Landau [3] algorithm
have been proven to be very powerful for investigations of
statistical phenomena, especially first-order phase transitions, for
lattice and off-latticemodels. They have been applied to a variety of
systems with rugged free-energy landscapes in physics, chemistry
and structural biology [4].

Due to the fact that computer performance increases mainly in
terms of parallel processing on multi-core architectures, a paral-
lel implementation is of great interest, if the additional cores bring
a benefit to the required simulation time. We present the scaling
properties of a simple and straightforward parallelization of the
multicanonical method, which has been reported in a similar way
in [5] without much detail to the performance. This parallelization
considers independent Markov chains, keeping communication to
a minimum. Thus, it can be added on top of the multicanonical
algorithm without much modification or system-dependent con-
siderations and is also suitable for systemswith simple energy cal-
culations. Similar to this parallelization, there have been previous
reports for theWang–Landau algorithm [6,7], which needed a little
more adaptation to the algorithm.

∗ Corresponding author.
E-mail address: zierenberg@itp.uni-leipzig.de (J. Zierenberg).

2. Multicanonical algorithm

The multicanonical method allows us to sample a system over
a range of canonical ensembles at the same time. This is possible,
because the statistical weights are modified in such a way that the
simulation reaches each configuration energy of a chosen interval
with equal probability, resulting in a flat energy histogram. To this
end, the canonical partition function, in terms of the density of
states Ω(E), is modified in the following way:

Zcan =


{xi}

e−βE({xi}) =


E

Ω(E)e−βE

→ ZMUCA =


{xi}

W (E ({xi})) =


E

Ω(E)W (E). (1)

In order that each energy state occurswith the same probability, as
requested above, the statistical weights have to equal the inverse
density of statesW (E) = Ω−1(E). After an equilibrium simulation
with those weights, it is possible to reweight to all canonical en-
sembles with a Boltzmann energy distribution covered by the flat
histogram. This can be done for example by time-series reweight-
ing, where in the average each measured observable is multiplied
with its desired weight and divided by the weight with which it
was measured:

⟨O⟩β =
⟨Oie−βEiW−1 (Ei)⟩MUCA

⟨e−βEiW−1 (Ei)⟩MUCA
. (2)

Of course, the density of states and consequently the weights
that yield a flat energy histogram are usually not known in

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.12.006

http://dx.doi.org/10.1016/j.cpc.2012.12.006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:zierenberg@itp.uni-leipzig.de
http://dx.doi.org/10.1016/j.cpc.2012.12.006


1156 J. Zierenberg et al. / Computer Physics Communications 184 (2013) 1155–1160

Fig. 1. Scheme of the parallel implementation of the multicanonical algorithm on
p cores. After each iteration with independent Markov chains but identical weights,
the histograms are merged, the new weights are estimated and the weights are
distributed onto all processes again.

advance. Therefore the weights have to be obtained iteratively.
In the most simple way consecutive weights are obtained from
the last weights and the current energy histogram, W (n+1)(E) =

W (n)(E)/H(n)(E). More sophisticatedmethods exist, where the full
statistics of previous iterations is used for a stable and efficient
approximation of the density of states [2]. All our simulations use
this recursive version with logarithmic weights in order to avoid
numerical problems.
Parallel version

The idea of this parallel implementation, similar to [5], is to
distribute the time consuming generation of statistics on p inde-
pendent processes. All processes perform equilibrium simulations
with identical weights W (n)

i = W (n), i = 1, . . . , p, but with dif-
ferent random number seeds, resulting in similar but independent
energy histograms H(n)

i (E). The histograms are merged after each
iteration and one ends upwithH(n)(E) =


i H

(n)
i (E). According to

the weight modification of choice, the collected histogram is pro-
cessed together with the previous weights in order to estimate the
consecutive weightsW (n+1). The newweights are distributed onto
all processes, which run equilibrium simulations again. That way,
the computational effort may be distributed on several cores, al-
lowing us to generate the same amount of statistics in a fraction
of the time. It is important to notice that a modification of the pro-
gramonly influences thehistogrammerging and the distribution of
the new weights, see Fig. 1. The iterations are independent copies
run in parallel and the weight modification is performed on the
master process as in the non-parallelized case.

3. Systems and implementation issues

We consider two discrete two-dimensional spin systems,
namely the well known Ising model and the q-state Potts model
with q = 8, where the Ising model can be mapped onto the q = 2
Potts model. The Ising model exhibits a second-order phase tran-
sition at β0 = ln


1 +

√
2

/2 and the 8-state Potts model exhibits

a first-order phase transition at β0 = ln

1 +

√
8

. The spins are

located on a square lattice with side length L and interact only be-
tween nearest neighbors. In the case of the Ising model, the inter-
action is described by the Hamiltonian

H (Ising)
= −J


⟨i,j⟩

sisj, (3)

where J is the coupling constant and si,sj can take the values
{−1, 1}. For the q-state Potts model, where each site assumes val-
ues from {0, . . . , q − 1}, the nearest-neighbor interaction is de-
scribed by

H (Potts)
= −J


⟨i,j⟩

δ(si, sj), (4)

where δ(si, sj) is the Kronecker-Delta function which is only non-
zero in the case si = sj.

In both cases the number of discrete energy states is propor-
tional to the number of lattice sites V = L2, such that the width of
the energy range increases quickly with system size. The simula-
tions in this study start at infinite temperature, i.e., β = 1/T = 0
with quite narrow energy histograms. Because an estimation of
successive weights is only possible for energies with non-zero his-
togram entries, the number of iterationsmay be very large forwide
energy ranges. In order to ensure faster convergence, our imple-
mentation includes after each estimation of weights a correction
function,which linearly interpolates the logarithmicweights at the
boundaries of the sampled region (with a range of L bins), allow-
ing the next iteration to sample a larger energy region. The MUCA
weights are converged if the last iteration covered the full energy
range and all histogram entries are within half and twice the aver-
age histogram entry. Between convergence of the weights and the
final production run, the systems are thermalized again in order
to yield correct estimates of the observables. In both cases, each
sweep includes V numbers of spin updates.

4. Performance and scaling

In order to estimate the performance and the speedup of the
parallel algorithm appropriately, we performed the analysis in
two steps. First, we estimated the optimal number of sweeps per
iteration and core, which we will refer to as M . To this end, we
performed parallel MUCA simulations over a wide range of M for
different lattice sizes L and number of cores p. The simulations
were thermalized once in the beginning on every core, continuing
the next iteration with the last state of the previous iteration on
that core. This violates the equilibrium condition a little, as no
intermediate thermalization phase was applied and part of the
iteration was needed to reach equilibrium. This is accepted in
order to compare the performance equally without an additional
parameter to optimize next toM . Furthermore, the physical results
were not influenced, because each Markov chain was thermalized
before the final production run. We determined the mean number
of iterations until convergence to a flat histogram N̄iter as the
average over 10 simulations at different initial seeds. Plotting the
total number of sweeps N̄iterMp versus M , we can estimate the
optimal number of sweeps per iteration and core M̃opt as the
minimum of this function (see Fig. 2(left)). For a small number of
cores, this curve has a rather broad minimum, introducing a rough
estimate. If, on the other hand, we stretch the curves along the x-
axis with the number of cores, the outcomes look quite similar.

Selected results of the estimation of M̃opt are shown in
Fig. 2(right). We see that for different lattice sizes and spin models
the dependence on the number of cores may be described by a 1/p
power law, where the amplitudes seem to depend on the system
size and the number of states (notice that the Potts model curves
nearly coincide with those of the Ising model with 4 times system
size). In order tomeasure the performance equally, it is convenient
to describe M̃opt by a function of system size L and number of cores
p, M̃opt(L, p) ≈ Mopt(L, p) = M1(L)/p, whereM1 is the interpolated
optimalM for one core. Therefore,we estimated M̃opt for the square
lattice sizes 8, 16, 24, 32, 48, 64, and 96 (the latter two only for
Ising) with p ≤ 32 and fitted for fixed size Mopt(L, p) = M1(L)/p.
The obtained M1(L) were plotted over L and fitted with a power
law (see Fig. 3). In the end, the optimal number of sweeps per core
and iteration were systematically described by the functions

M(Ising)
opt (L, p) = 5.7(5) × L2+0.51(4) 1

p

M(8Potts)
opt (L, p) = 24(4) × L2+0.67(6) 1

p
,

(5)



Download English Version:

https://daneshyari.com/en/article/10349591

Download Persian Version:

https://daneshyari.com/article/10349591

Daneshyari.com

https://daneshyari.com/en/article/10349591
https://daneshyari.com/article/10349591
https://daneshyari.com

