
Computer Physics Communications 184 (2013) 1297–1309

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel grid library for rapid and flexible simulation development✩

I. Honkonen a,b,∗, S. von Alfthan a, A. Sandroos a, P. Janhunen a, M. Palmroth a

a Finnish Meteorological Institute, Helsinki, Finland
b Department of Physics, University of Helsinki, Helsinki, Finland

a r t i c l e i n f o

Article history:
Received 24 May 2012
Received in revised form
5 October 2012
Accepted 14 December 2012
Available online 29 December 2012

Keywords:
Parallel grid
Adaptive mesh refinement
Free open source software

a b s t r a c t

We present an easy to use and flexible grid library for developing highly scalable parallel simulations.
The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an
arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space
and time allowing dccrg to be used in very different types of simulations, for example in fluid and
particle codes. Dccrg transfers the data between neighboring cells on different processes transparently
and asynchronously allowing one to overlap computation and communication. This enables excellent
scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and
hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI
processes reducing the scalability of adaptivemesh refinement (AMR) to between 200 and 600 processes.
Dccrg is free software that anyone can use, study andmodify and is available at https://gitorious.org/dccrg.
Users are also kindly requested to cite this work when publishing results obtained with dccrg.

Program summary

Program title: DCCRG
Catalogue identifier: AEOM_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU Lesser General Public License version 3
No. of lines in distributed program, including test data, etc.: 54975
No. of bytes in distributed program, including test data, etc.: 974015
Distribution format: tar.gz
Programming language: C++.
Computer: PC, cluster, supercomputer.
Operating system: POSIX.

The code has been parallelized using MPI and tested with 1–32768 processes
RAM: 10 MB–10 GB per process
Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20.
External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4]
Nature of problem:
Grid library supporting arbitrary data in grid cells, parallel adaptivemesh refinement, transparent remote
neighbor data updates and load balancing.
Solution method:
The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and
edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is
given as a template parameter when instantiating the grid.
Restrictions:
Logically cartesian grid.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Correspondence to: P.O. Box 503, 00101 Helsinki, Finland. Tel.: +35 8503803147; fax: +35 8295394603.

E-mail addresses: ilja.honkonen@fmi.fi, ilja.honkonen@helsinki.fi (I. Honkonen).

0010-4655/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2012.12.017

http://dx.doi.org/10.1016/j.cpc.2012.12.017
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
https://gitorious.org/dccrg
http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:ilja.honkonen@fmi.fi
mailto:ilja.honkonen@helsinki.fi
http://dx.doi.org/10.1016/j.cpc.2012.12.017


1298 I. Honkonen et al. / Computer Physics Communications 184 (2013) 1297–1309

Running time:
Running time depends on the hardware, problem and the solution method. Small problems can be solved
in under a minute and very large problems can take weeks. The examples and tests provided with the
package take less than about one minute using default options.

In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order
of 106 total created cells per second.
References:

[1] http://www.mpi-forum.org/.
[2] http://www.boost.org/.
[3] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan datamanagement services for par-

allel dynamic applications, Comput. Sci. Eng. 4 (2002) 90–97. http://dx.doi.org/10.1109/5992.988653.
[4] https://gitorious.org/sfc++.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

During the rising phase of the solar cycle, it is becoming more
important to understand the physics of the near-Earth space. The
dynamical phenomena caused by the constant flow of magne-
tized collisionless plasma from the Sun creates space weather
that may have harmful effects on space-borne or ground-based
technological systems or on humans in space. While the physics
of space weather is being studied with in situ instruments (e.g.
NASA’s Radiation Belt Storm Probes launched in 2012-08-301) and
by means of remote sensing, it is also important to model the
near-Earth space with numerical simulations. The simulations can
be used both as a context to the one-dimensional data sets from
observations, as well as a source to discover new physical mech-
anisms behind observed variations. Present large scale (global)
simulations are based on computationally light-weight simplified
descriptions of plasma, such as magnetohydrodynamics (MHD,
[1–4]). On the other hand the complexity and range of spatial scales
(from less than 101 to over 106 km) in spaceweather physics signi-
fies the need to incorporate particle kinetic effects in the modeled
equation set in order to better model, for example, magnetic re-
connection, wave–particle interactions, shock acceleration of par-
ticles, ring current, radiation belt dynamics and charge exchange
(see e.g. [5] for an overview). However, as one goes from MHD to-
wards the full kinetic description of plasma (from hybrid PIC [6]
and Vlasov [7] to full PIC [8,9]), the computational demands in-
crease rapidly, indicating that the latest high performance com-
puting techniques need to be incorporated in the design of new
simulation architectures.

As the number of cores in the fastest supercomputers in-
creases exponentially the parallel performance of simulations on
distributed memory machines is becoming crucial. On the other
hand, utilizing a large number of cores efficiently in parallel is chal-
lenging especially in simulations using run-time adaptivemesh re-
finement (AMR). This is largely a data structure and an algorithm
problem albeit specific to massively parallel physical simulations
running on distributed memory machines.

In computer simulations dealing with, for example, continuous
matter (a fluid) the simulated domain is discretized into a set of
points or finite volumeswhichwewill refer to as cells. At any given
cell the numerical solution of a differential equation describing the
problem often depends only on data within a (small) part of the
simulated volume. This is true for a single time step in a solver for
a hyperbolic problem or a single iteration in a solver for an elliptic
problem. This spatial data dependency canbe implemented implic-

1 http://www.nasa.gov/mission_pages/rbsp/main/index.html

itly in the solver function(s) or explicitly as a separate grid library
used by the application.

In a simple case the number of cells in the simulation stays
constant and the data dependency of each cell is identical allowing
cell data to be stored in an array whose size is determined at grid
creation and the spatial neighbors to be represented as indices into
this array. A straightforward AMR extension of this concept is to
create additional nested grids in specific parts of the simulation
domainwith higher resolution. By solving each grid separately and
interpolating the results from finer grids into coarser grids one
does not have to modify the solver functions. This technique is
used extensively for example by Berger (see [10] for some of the
earliest work) and by [11,12]. In the rest of this work however
we will concentrate on AMR implementations in which additional
overlapping grids are not created but instead cells of the initial grid
are refined, i.e. replaced with multiple smaller cells.

A generic unstructured grid (as provided for example by
libMESH [13]) does not admit as simple a description as above
and is generally described by a directed graph in which vertices
represent simulation cells and directed edges represent the data
dependencies between cells. Unfortunately the nomenclature of
graph theory and geometry overlap to some extent and discussing
both topics simultaneously can lead to confusion. Fig. 1 shows the
nomenclature we use from this point forward, the standard graph
theoretical terms are given in parentheses for reference. A cell is a
natural unit in simulations using the finite volume method (FVM)
and hereinafter we will use the term cell instead of vertex when
discussing graphs. Also an edge in FVM simulations usually refers
to the edges of a cube representing the physical volume of a cell,
and hence we will use the term arrow to refer to a directed edge
in a graph. Furthermore we note that each cell in the grid can also
represent, for example, a block of cells similarly to [3], but for the
purposes of this work the actual data stored in grid cells is largely
irrelevant.

Since a graph can also be used to represent the cells and arrows
of grids simpler than an unstructured mesh, the question arises
how does a particular program implement its graph representa-
tion of the simulated system, e.g. what simplifying assumptions
have been made and how is the graph represented in memory?
A popular representation in (M)HD AMR simulations is to have a
fixed number of arrows directed away from each source cell and
to store the arrows as native pointers to the destination cells. In
case a cell does not exist all arrows pointing to it are invalidated
in neighboring cells. This technique has been used with different
variations by [14–17], for example.

There are several possibilities for representing the cells and
arrows of a graph, for example an adjacency list or an adjacency
matrix [18]. In physical simulations the number of arrows in the
graph is usually of the same order as the number of cells in which

http://www.mpi-forum.org/
http://www.boost.org/
http://dx.doi.org/10.1109/5992.988653
https://gitorious.org/sfc++
http://www.nasa.gov/mission_pages/rbsp/main/index.html


Download English Version:

https://daneshyari.com/en/article/10349606

Download Persian Version:

https://daneshyari.com/article/10349606

Daneshyari.com

https://daneshyari.com/en/article/10349606
https://daneshyari.com/article/10349606
https://daneshyari.com

