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a b s t r a c t

We completed the development of simulation code that is designed to study the behavior of a conjectured
dark matter galactic halo that is in the form of a Bose–Einstein Condensate (BEC). The BEC is described by
the Gross–Pitaevskii equation, which can be solved numerically using the Crank–Nicholson method. The
gravitational potential, in turn, is described by Poisson’s equation, that can be solved using the relaxation
method. Our code combines these two methods to study the time evolution of a self-gravitating BEC. The
inefficiency of the relaxationmethod is balanced by the fact that in subsequent time iterations, previously
computed values of the gravitational field serve as very good initial estimates. The code is robust (as
evidenced by its stability on coarse grids) and efficient enough to simulate the evolution of a system over
the course of 109 years using a finer (100 × 100 × 100) spatial grid, in less than a day of processor time
on a contemporary desktop computer.

Program summary

Program title: bec3p

Catalogue identifier: AEOR_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOR_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 5248

No. of bytes in distributed program, including test data, etc.: 715402

Distribution format: tar.gz

Programming language: C++ or FORTRAN.

Computer: PCs or workstations.

Operating system: Linux or Windows.

Classification: 1.5.

Nature of problem:
Simulation of a self-gravitatingBose–Einstein condensate by simultaneous solution of theGross–Pitaevskii
and Poisson equations in three dimensions.

Solution method:
The Gross–Pitaevskii equation is solved numerically using the Crank–Nicholson method; Poisson’s equa-
tion is solved using the relaxation method. The time evolution of the system is governed by the Gross–
Pitaevskii equation; the solution of Poisson’s equation at each time step is used as an initial estimate for
the next time step, which dramatically increases the efficiency of the relaxation method.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Running time:
Depends on the chosen size of the problem. On a typical personal computer, a 100 × 100 × 100 grid can
be solved with a time span of 10 Gyr in approx. a day of running time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The rotation of spiral galaxies does not follow simple pre-
dictions based on Newton’s laws. Instead, the rotational veloc-
ity curve of most spiral galaxies, plotted as a function of radial
distance from the galaxy center, remains ‘‘flat’’ for a broad range
of radii. The standard proposal to resolve this problem is to pre-
sume the existence of a ‘‘dark matter halo’’, which contains most
of the mass of a spiral galaxy. To maintain consistency with the
predictions of the most broadly accepted cosmological models,
this halo must necessarily consist of ‘‘exotic’’ matter, i.e., matter
predominantly composed of something other than baryons. The
halo must also be collisionless and not interacting with baryonic
matter [1].

The existence of such a halo with a suitable geometry can ac-
count for the observed rotation curves of visible matter. However,
a difficult problem is to construct a darkmatter halo that is gravita-
tionally stable and does not predict excessive darkmatter densities
in the inner parts of the galaxy where most visible matter resides.
This issue is known as the ‘‘cuspy halo problem’’ in the relevant
literature [2].

A recent proposal [3–8] addresses the cusp problem by a dark
matter halo that forms a Bose–Einstein condensate (BEC) [9,10].
A particularly intriguing argument is that the condensate dark
matter is, in fact, axions [11]. The dynamics of a BEC halo may be
determined by the balance of the attractive force of gravity and a
repulsive effective long-range interaction [12–15] (see also [16]).
In particular, as the dark matter halo dominates the gravitational
field of a spiral galaxy in its outer regions, a simulation that is
restricted to just the halo should be sufficient to determine if
a field can be obtained that yields the desired circular orbital
velocities.

In the present paper, we discuss a simulation tool that we
constructed to explore the dynamics of a galactic BEC halo. The tool
is not intended in its present form to study the core–cusp problem;
however, we anticipate that it will be useful for investigating the
rotational velocities of a galaxy surroundedby aBEChalo. Ourwork
is based primarily on our previous simulation of BEC in laboratory
conditions, described by the non-linear Schrödinger equation, also
known in the literature as the Gross–Pitaevskii equation. Whereas
in the laboratory, a BEC characterized by a repulsive interaction
is held together by an artificially introduced trapping potential, in
the case of a galaxy floating in empty space, the trapping potential
must be replaced by self-gravity. A numerical solution must,
therefore, simultaneously address the initial value problem of the
Gross–Pitaevskii equation and the boundary condition problem of
Poisson’s equation [17].

In Section 2, we introduce the dimensionless form of the Gross–
Pitaevskii equation used in our computations, and themethodused
to solve this equation efficiently. In Section 3 we discuss Poisson’s
equation for gravity and the relaxation method. In Section 4 we
elaborate on the use of physical units that are suitable for such
a simulation in an astrophysical context. The problem of using
suitable initial conditions to form a stable halo is briefly discussed
in Section 5. In Section 6 we discuss the implementation of our
method in FORTRAN and C++, and also comment on the possible
use of GPUs for accelerated computation. Finally, our conclusions
and outlook are presented in Section 7.

2. Solving the Gross–Pitaevskii equation

A self-interacting, optionally rotating Bose–Einstein condensate
is described accurately by a form of the time-dependent non-linear
Schrödinger equation known as the Gross–Pitaevskii equation
[18,19]. For computational purposes, it is advantageous to use a
dimensionless form of this equation, which takes the form [20]:

(i − γ )
∂ψ

∂t
= Ĥψ, (1)

where γ is a softening parameter thatmay also be viewed as a phe-
nomenological parameter characterizing dissipation (γ = 0 is a
valid choice), ψ is the wavefunction, t is time, and Ĥ is the Hamil-
ton operator, which in turn is given by

Ĥ = −
1
2
∇

2
+ V . (2)

The potential V is the sum of classical potentials (e.g., gravita-
tional potential, trapping potential), the chemical potential, the
non-linear term, and a rotational term:

V = φ + κ|ψ |
2
− µ−ΩLz, (3)

where κ represents the interaction strength, Ω is the angular ve-
locity, and Lz = i(x∂y − y∂x). We assume that the condensate’s net
rotation is in the x–y plane.

In earlier work [21–24], we solved the Gross–Pitaevskii equa-
tion numerically using the Crank–Nicholson method in combina-
tion with Cayley’s formula [25], in the presence of an isotropic
trapping potential (for a numerical solution in the presence of an
anisotropic trap, see [26,27]). In particular, the use of Cayley’s for-
mula ensures that the numerical solution remains stable and the
unitarity of the wavefunction is maintained.

The valueψn+1 of thewavefunction at the (n+1)-th time step is
obtained from the known valuesψn at the n-th time step by solving
the following equation:
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ψn. (4)

After evaluating the right-hand side given ψn, the left-hand side
can be solved for. If Ĥ is a linear operator, this is a linear system of
equations for the unknown values ψn+1.

In the one-dimensional case, the Hamilton operator reads

Ĥ = −
1
2
∂2

∂x2
+ V . (5)

The second derivative can be approximated as a finite difference:

∂2ψ
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=
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(1x)2
. (6)

Substituting this into Eq. (4), we obtain
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