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a b s t r a c t

Large dynamical changes in thermalizing glassy systems are triggered by trajectories crossing record sized
barriers, a behavior revealing the presence of a hierarchical structure in configuration space. The observa-
tion is here turned into a novel local search optimization algorithmdubbed record dynamics optimization,
or RDO. RDO uses the Metropolis rule to accept or reject candidate solutions depending on the value of a
parameter akin to the temperature and minimizes the cost function of the problem at hand through cy-
cles where its ‘temperature’ is raised and subsequently decreased in order to expediently generate record
high (and low) values of the cost function. Below, RDO is introduced and then tested by searching for the
ground state of the Edwards–Anderson spin-glass model, in two and three spatial dimensions. A popular
and highly efficient optimization algorithm, parallel tempering (PT), is applied to the same problem as a
benchmark. RDO and PT turn out to produce solutions of similar quality for similar numerical effort, but
RDO is simpler to program and additionally yields geometrical information on the system’s configuration
space which is of interest in many applications. In particular, the effectiveness of RDO strongly indicates
the presence of the above mentioned hierarchically organized configuration space, with metastable re-
gions indexed by the cost (or energy) of the transition states connecting them.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Built on analogies with physical or biological processes, heuris-
tic optimization techniques are widely used in science [1–7]. Of
present interest is simulated annealing (SA), a well known local
search algorithm based on the Metropolis algorithm, which min-
imizes the cost of candidate solutions in a way similar to a physical
systemminimizing its free energy under cooling [8,9]. In SA, a pro-
posed solution is first generated by locally modifying the current
solution. Changes lowering the cost are accepted and others are
accepted with probability exp(−∆E/T ), where ∆E > 0 is the ad-
ditional cost incurred andwhere the parameter T is conventionally
called temperature. Ideally, a cooling schedule gradually decreas-
ing the temperature down to zero should reach the ground state,
i.e., the desired solution of the optimization problem. However,
in applications to hard combinatorial problems SA invariably gets
stuck in one of the many suboptimal or metastable configurations
which characterize these systems. Since available local configura-
tional changes mainly get rejected, a larger partial randomization
is required to obtain further improvements.

Large changes leading a thermalizing complex system from a
metastable configuration to another are often triggered by thermal
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energy fluctuations of record magnitude [10–13]. It is then natural
to hypothesize that visiting configurations of record-high cost, or
energy, similarly help a ‘thermal’ optimization algorithm of the SA
type to escape suboptimal solutions.

The configuration space, or energy landscape, of the Ed-
wards–Anderson spin glass [14] was previously investigated using
extremal optimization [7], an optimization and exploration al-
gorithm indifferent to energy barriers, and by the waiting time
method [15], a kinetic Monte Carlo algorithm with no rejections.
The analysis led to the conclusion that, in order to achieve a lower
BSF value, which is desirable in optimization, the barrier B(t)must
previously reach a new high record. Importantly, this property is
not associated with the algorithms used but pertains to all energy
landscapes which can be coarse-grained into inverted binary trees
where nodes represent metastable configurations [16] and height
represents the energy. Motivated by the above considerations, the
record dynamics optimization (RDO) algorithm introduced below
dynamically generates a non-monotonic SA schedule where heat-
ing and cooling phases alternate. Each heating phase terminates
once a record high ‘barrier’ (defined below) is encountered and
each cooling phase terminates once a state of record low cost is
found. Möbius et al. [17] earlier introduced a non-monotonic an-
nealing schedule where temperature oscillations are controlled by
a tunable parameter instead of being determined by intrinsic geo-
metrical properties of the landscape.

For demonstration purposes, RDO is used to search for the
ground state of a three dimensional Edwards–Anderson (EA) spin
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glass [14], a standardNP hard optimization problem. For complete-
ness, it is further applied to the two dimensional EA model. RDO
performance is then compared to that of a carefully optimized ver-
sion of parallel tempering (PT). The numerical effort needed to ob-
tain results of comparable quality is similar for the two methods.
However, RDO has fewer tunable parameters and is more easily
implemented. Second, RDO provides, at no extra cost, some infor-
mation on the configuration space structure which might be of in-
terest in landscape explorations.

2. The RDO algorithm

First some notation: a sweep in an MC run comprises a number
of elementarymoves or queries, i.e. the generation and acceptance
or rejection of a candidate move, equal to the number of indepen-
dent variables of the problem. The number of sweeps carried out
up to a certain point is dubbed time and denoted by the symbol t .
Each query generates a putative solution or state, and the ordered
sequence of states sampled in [0, t] is called a trajectory. The cost
associated with a state is called its energy E. The best so far en-
ergy, BSF(t), is the lowest energy sampled in a single trajectory in
[0, t]. The barrier B(t) associated with a state sampled at time t is
B(t) def

= E(t) − BSF(t). Lower case symbols are used for quantities
scaled by a system size, i.e., in the example considered b(t) is the
barrier energyper spin.We stress that theBSF andbarrier functions
are stochastic processes and that inherent geometrical properties
of the landscape can only be estimated by averaging over a suitably
large ensemble of independent trajectories.

The RDOalgorithmcomprises an initial phase followedby a suc-
cession of cooling and heating phases controlled by record events.
Each of these phases involves decreasing or increasing the temper-
ature within a set of 22 predefined and equidistant values in the
temperature range [TMIN, TMAX]. Several preliminary simulations
showed that TMAX = 1.2 slightly above the critical temperature of
the 3d model is a good choice. Furthermore, TMIN = 0.3 was cho-
sen as BSF values are rarely, if at all, found below T = 0.3. We let
the system cool and heat ad libitum since each cooling or heating
phase produces gradually lower extremal values. Once theminimal
temperature is reached, and no further BSF is found, the algorithm
stops.
1. Initialization of BSF and barrier values: any short naive [9] opti-

mization at a constant temperature typically slightly below the
critical temperature Tg will produce the first BSF value, BSF0.
The first high barrier value b0 > BSF0 is found by running the
algorithm at a slightly higher constant temperature. For i =

1, 2 . . . , the ‘barrier’ B(t) = E(t) − BSFi is used to control the
algorithm. The highest barrier overcome in heating phase i is
called Bi.

2. Cooling: let SB,i be the configuration corresponding to Bi. Start-
ing from SB,i run SA with decreasing temperature until a lower
BSF value is found. If no lower BSF is found, cooling stops after
Nstep = 50,000 sweeps.

3. Running at constant T: the Metropolis algorithm at constant
T is used until either m new BSF values have been found or
the preset max time is exceeded. In practice m is a small in-
teger, i.e., m = 3 in the present simulations. This step ensures
that once the correct region of configuration space is identified,
some time is spent exploring it. BSFi+1 is the lowest BSF value
identified during this phase.

4. Heating: starting from Si+1, the configuration corresponding to
BSFi+1 heat the system until B(t) = E(t) − BSFi+1 > Bi. The
achieved record value of B(t) defines Bi+1.

5. Set i + 1 → i, go to step 2 and repeat ad libitum.

3. Parallel tempering

Parallel tempering (PT) avoids trapping by independently
searching a numberNT of identical replicas of the problem at hand.

The m’th replica is explored by a conventional Metropolis algo-
rithm run at a temperature Tm. Additional configurational swaps
between replicas, also controlled by the Metropolis criterion in or-
der to ensure detailed balance, provide the sought escape route
from suboptimality. A successful PT implementation requires con-
sideration of the temperatures at which the replicas are run and
a compromise between the number of attempted swaps and the
number of standard queries within the replicas. The reader is
referred to [18–22] for an in-depth discussion of PT. The brief
summary provided below describes the implementation presently
used to benchmark RDO.
1. NT different copies of the system are updated in parallel at

temperatures Tm > Tm+1, m = 1, . . . ,NT through one or more
Monte Carlo sweeps.

2. A proposed swap between configuration Cm and Cm+1 is ac-
cepted or rejected according to the Metropolis criterion. Defin-
ing βm = 1/Tm, and

∆S =

βm+1E(Cm) + βmE(Cm+1)


−


βmE(Cm) + βm+1E(Cm+1)


, (1)

the exchange is accepted with probability min(1, e−∆S).
3. Further exchanges between the configurations associated with

βm+1 and βm+2 are accepted or rejected in the same way, even-
tually exploring the whole set of temperatures.

4. Go to step 1 and repeat ad libitum.

After a number of exploratory simulations, the highest temper-
ature was chosen as Tmax = 1.6, a value higher than the critical
temperature of the Edwards–Anderson spin glass i.e. Tc ≈ 0.95
[21]. The lowest temperature is dynamically determined as dis-
cussed below. A suitable number of temperatures for PT is gener-
ally estimated to be NT ≈


Nspin [19]. In the following, NT = 30,

50 and 90 are used for L = 30, 50 and 100 in the 2d simulations,
while NT = 30, 40 and 80 are used in the 3d case for L = 8, 14 and
20.

To accept an exchange between copies with probability ≈ 0.5,
a value considered to be optimal [20], the Tm values are treated
as dynamical variables using the recursive method described in
Ref. [19]. Initially, the inverse temperatures βm are set to

βm = β1 + (βM − β1)
m − 1
M − 1

(2)

withM = NT . The updated set { β ′
m} is obtained using the sampled

exchange rates pm between configurations at inverse temperatures
βm and βm−1:

β ′

1 = β1

β ′

m = β ′

m−1 + (βm − βm−1)
pm
c

withm = 2, . . . ,M.

c =
1

M − 1

M
m=2

pm. (3)

While in Ref. [19] temperatures are only updated initially to reach
the constant values used in the simulation, we found it more con-
venient to update them during the simulation itself, at logarithmi-
cally equidistant times 2n

×100MC sweeps, with n = 1, 2, . . . ,N .
Two different benchmarks for RDO are provided. The first, our

‘fast’ PT, has N = 10 and Nstep = 102,400 sweeps per replica.
Adding the computational effort for all replicas, PT is eight time
faster than RDO but produces results of somewhat lesser quality.
The second version, ‘slow’ PT, has N = 13 and Nstep = 819,200,
with the total number of sweeps approximately corresponding to
that used in our RDO implementation. Both versions of the PT al-
gorithm include a final quench to T = 0, a step omitted in RDO.
Importantly, the PT versions implemented are carefully optimized
and based on the recent literature on the subject [18–22].
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