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a b s t r a c t

Accurate simulations of how radio frequency (RF) power is launched, propagates, and absorbed in a
magnetically confined plasma is a computationally challenging problem that forwhich no comprehensive
approach presently exists. The underlying physics is governed by the Vlasov–Maxwell equations, and
characteristic length scales can vary by three orders of magnitude. Present algorithms are, in general,
based on finding the constituative relation between the induced RF current and the RF electric field and
solving the resulting set of Maxwell’s equations. These linear equations use a Fourier basis set that is
not amenable to multi-scale formulations and have a large dense coefficient matrix that requires a high-
communications overhead factorization technique. Here the use of operator splitting to separate the
current and field calculations, and a low-overhead iterative solver leads to an algorithm that avoids these
issues and has the potential to solve presently intractable problems due to its data-parallel and favorable
scaling characteristics. We verify the algorithm for the iterative addition of parallel temperature effects
for a 1D electron Langmuir by reproducing the solution obtained with the existing Fourier kinetic RF code
aorsa (Jaeger et al., 2008).

Published by Elsevier B.V.

1. Introduction and background

In magnetically confined, nuclear fusion devices, the injection
of radio-frequency (RF) power in both the electron-cyclotron and
ion-cyclotron frequency ranges is used to heat the confined plasma
to the 100 M K temperatures required for significant fusion power
e.g., [1,2], and to provide some control over the magnetic field
configuration by driving current. Localized current drive may help
control global instabilities e.g., [3,4] and lead to increased fusion
energy production. The combination of high RF currents and elec-
tric fields, a poorly understood wave behavior in the edge plasma,
and numerous plasma modes with a wide range of wavelengths
makes it necessary for us to rely on computer simulations to un-
derstand the controlling physics and operational constraints of RF
heating and current drive. This physics includes heat generation
in the RF launching structure by localized currents, parasitic losses
in the poorly confined edge plasma and the potential for impurity
generation and wall damage; and a quantitative understanding of
wave propagation and absorption in the core fusion plasma.

For accurate predictions of how launched RF power will couple
to a plasma, the geometric details of the launching structure and
surrounding plasma facing component (PFC)s are important [5].
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However, the standard electromagnetic full-wave simulation tech-
niques capable of accurately, and efficiently modeling complex ge-
ometric structures (e.g., finite-difference [6] and finite-element [7]
methods) do not account for the non-local, kinetic response of the
plasma to the RF E&M fields. For the hot plasmas considered here,
the conductivity is an integral operator that depends on the inte-
grated time–history of an ion or electron in the oscillating RF field.

Present linear kinetic full-wave simulation techniques are lim-
ited in their application to the well-confined ‘‘core’’ plasma, where
the plasma and confining magnetic field profiles are smoothly
varying, and the small-scale geometric details of the launching and
PFC structures are essentially ignored. These techniques are based
on the Fourier spectralmethod [8] in at least one dimension, and as
such are not well suited to extending the core kinetic calculation
to include, and resolve, the geometric and material details of the
confining structures (see Section 3).

Furthermore, experiments using the ion-cyclotron range of
frequencies often observe anomalous losses of RF power between
the launching structure and the well-confined core plasma. These
unexplained losses are a concern for present and future fusion
devices [9,10], and as such, a simulationmethod that can efficiently
model the complex geometric structures at the plasma periphery
with high fidelity, and also include the kinetic physics of the target
plasma is required. An important feature of any new algorithm is a
formulation that localizes the simulation data in order to provide
more opportunity for exploiting computing architectures with
more computing power but without the corresponding increase
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in memory or memory bandwidth that are needed for spectral
algorithms. Here we present such a method.

The rest of the paper is organized as follows. Section 2 states
the Vlasov–Maxwell system describing the linear RF plasma-wave
problem. Section 3 discusses previous and alternate methods for
determining the kinetic plasma response, with an emphasis on the
limitations we are trying to remove. Section 4 describes our pro-
posed method, and Section 4.1 presents the details of our kinetic
plasma current calculation. Verification of the proposed method
is presented in Section 4.2, and a complete proof-of-principle
with finite-difference code, kinetic current module, and iterative
scheme is demonstrated in Section 4.3. The computational and
scaling advantages of the presented method are discussed in Sec-
tion 5.

2. Linear kinetic RF plasma simulation

In the frequency domain, Maxwell’s equations reduce to Eq. (1)
for the wave electric field E1 (r, ω)L1E1 +

iω
c2ϵ0

j1 = −iωµ0jA (a)

j1 = L2E1 (b)
(1)

where jA (r, ω) is the driving antenna current at angular frequency
ω and the localMaxwell operator isL1 = −∇×∇×+

ω2

c2
.L2 is the

integral operator described by in the following. The kinetic plasma
current j1 for a single species is

j1 = L2E1 = q


vf1 (r, v, t) dv. (2)

The kinetic constituative relation is determined by solving for
the oscillating piece (f1) of the distribution function f (r, v, t) =

f0 (r, v) + f1 (r, v, t) which satisfies the linearized Vlasov equation
as
df1
dt

=
∂ f1
∂t

+ v · ∇f1 +
q
m

(v × B0) · ∇v f1

= −
q
m

(E1 + v × B1) · ∇v f0. (3)

By the method-of-characteristics, and with an initial condition as
f1 (t = −∞) = 0, f1 is

f1 (r, v, t) = −
q
m

 t

−∞


E1


r′, t ′


+ v


t ′


× B1

r′, t ′


· ∇v f0


r′, v′, t ′


dt ′ (4)

where the characteristic curves

r′, v′, t ′


are given by the unper-

turbed particle trajectories

dr′

dt ′
= v′

dv′

dt ′
=

q
m


v′

× B0

r′


.

(5)

3. Previous and alternative approaches

The constituative relation described above is often [11] repre-
sented as

j1 (r, t) =

 t

−∞

dt ′


dr′ ¯̄σ

r, r′, t, t ′


· E1


r′, t ′


(6)

where ¯̄σ is the plasma conductivity kernel. The convolution inte-
gral here means that the plasma response at each spatial location
depends on the conductivity and wave electric field at all other
locations and times. Historically in the study of RF waves in plas-
mas, the spatial convolution in Eq. (6) is avoided by transform-
ing to k (Fourier) space. The typical analysis e.g., [11–13] applies
a Fourier–Laplace transform,

E1 (r, t) =


dω


dk Ek,ω

1 exp (i (k · r − ωt)) (7)

thus also assuming a time-harmonic temporal dependence (i.e.,
frequency-domain), and the spatial convolution is transformed to
a multiplicative relationship between the wave electric field and
its associated conductivity tensor for each Fourier mode, i.e., local
in k-space, rather than non-local in configuration space,

jk,ω
1 = ¯̄σ (k, ω) · Ek,ω

1 . (8)

This independence of modes has allowed for the tractable ana-
lytic study of waves in hot plasmas presented in the standard texts
[11–13], where expressions for ¯̄σ (k, ω) are calculated by analytic
integration of Eqs. (2)–(5) for a given single Fourier mode Ek,ω

1 .
Given that these k dependent (Fourier) forms for the hot plasma
conductivity are the only ones in the literature, a spectral method
with a Fourier basis has been the natural choice for hot plasma
simulation in the frequency domain e.g., [14]. These previous ap-
proaches rely on the analytic response of jk,ω

1 to Ek,ω
1 such that the

operation of L2 may be substituted into the Fourier transform of
Eq. (1) and solve with L1 and L2 simultaneously with each row in
the dense coefficient matrix of the spectral method being

L1E1 (k, ω) +
iω
c2ϵ0

L2E1 (k, ω) = −iωµ0jA. (9)

For analytic calculations, the decomposition of unbounded, or
periodic spatial domains into a kinetic response for each k has
proved extremely useful. However, for simulation of bounded do-
mains with complex boundary geometries and structures, and
multi-scale phenomena that include both regions where kinetic
effects are, and are not important, this approach has proved trou-
blesome. Spectral methods require the solution to a dense linear
system whose work scales as O(N3) and memory requirements as
O(N2), where N is the number of degrees of freedom (number of
spatial points × 3 field components). Also, sharp material bound-
aries, such as plasma facing components, and sharp features in the
plasma dielectric at resonant locations can lead to unphysical so-
lutions stemming from Gibbs phenomena [8] and aliasing [8].

To avoid one of these issues, that associated with solving
bounded problems with a periodic basis, previous kinetic simula-
tions of RFwave propagation in fusion plasmas have either applied
the Fourier spectral method only to a periodic direction, e.g., the
magnetic field parallel direction along closed magnetic flux sur-
faces [15], or by adding artificial bounding regions to the simula-
tion domain that allow periodicity to be enforced [16,17]. The first
approach limits kinetic simulation to domains that have a peri-
odic direction, and neither allow for a variable resolutionmesh that
can be conformed to real PFC structures. Without a mesh-/grid-ing
solution that reduces N while preserving accuracy (i.e., variable
resolution), kinetic RF simulation is restricted to leadership class
supercomputing facilities where, even at the largest values of N ,
accurate geometry representation of plasma facing surfaces in a
Tokamak device is not possible. Furthermore, the Fourier spectral
method assumes the problem is completely non-local, as Eq. (6)
suggests. This assumption is one of the reasons spectral kinetic
methods are so costly. In practice, the spatial extent of the non-
locality is limited to the trajectories traversed by particles con-
tributing to the plasma current at (r, t), and only back along those
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