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a b s t r a c t

An efficient Parallel Node Placement method by Bubble Simulation (PNPBS), employing METIS-based
domain decomposition (DD) for an arbitrary number of processors is introduced. In accordance with
the desired nodal density and Newton’s Second Law of Motion, automatic generation of node sets by
bubble simulation has been demonstrated in previous work. Since the interaction force between nodes
is short-range, for two distant nodes, their positions and velocities can be updated simultaneously and
independently during dynamic simulation,which indicates the inherent property of parallelism, it is quite
suitable for parallel computing. In this PNPBSmethod, theMETIS-based DD scheme has been investigated
for uniform and non-uniform node sets, and dynamic load balancing is obtained by evenly distributing
work among the processors. For the nodes near the common interface of two neighboring subdomains,
there is no need for special treatment after dynamic simulation. These nodes have good geometrical
properties and a smooth density distribution which is desirable in the numerical solution of partial
differential equations (PDEs). The results of numerical examples show that quasi linear speedup in the
number of processors and high efficiency are achieved.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of parallel computers and the in-
creasing scale of the finite element computing, parallel techniques
for the finite element method (FEM) have been given unprece-
dented attention [1–8]. At present, the parallel aspects of FEM
primarily focus on each function block such as mesh generation
(referred to as pre-processing) [1–5], global stiffnessmatrix forma-
tion and solving systems of linear equations (referred to as main-
processing) [6–8]. The structural analysis of FEM cannot be done
until the completion of the FEM mesh generation, inevitably, this
serial characteristic seriously restricts the parallel efficiency and
becomes one of the bottlenecks in large-scale parallel FEM analy-
sis [9–12].

In recent years, much effort has been devoted to improve the
parallel efficiency of the FEM analysis based on nodes. The Free
Mesh Method (FMM) and the Node-based Local Finite Element
Method (NLFEM) have been developed by Yagawa et al. [9] and Nie
et al. [12], respectively. The FMM and the NLFEM are parallel node-
based finite element methods featuring node-based local mesh
generation and node-based finite element calculation. These new
parallel mechanisms achieve naturally the seamless link between
pre-processing and main-processing, and get rid of the original
serialization process. Nevertheless, it is worth noting that the FMM
and the NLFEM begin by appropriately distributing the nodes in
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the analysis domain [9,12,13], i.e. node coordinates and nodal
density information are given as input information. However, how
to generate nodes in parallel is not mentioned.

In fact, the quality of the node set has a great influence on
the accuracy and convergence properties of finite element solu-
tion for node-based parallel finite element methods. Therefore,
how to generate node sets properly and efficiently is attracting
much research interest, and some research results have already
been reported in Refs. [14–18] and references therein. Li et al. [16]
construct an advancing front-based sphere packing process. Based
on a centroid Voronoi structure, Ju et al. [17] use probabilistic
methods to generate centroidal voronoi tessellations (CVTs) and
the parallel implementations are also presented. Zhang et al. [18]
propose a node placement approach using Monte Carlo simulation
to minimize system potential energy, and thereby to find a near-
equilibrium configuration of nodes. Shimada et al. [19] describe
a scheme to pack circles by defining proximity-based interacting
forces among circles and finding a force-balancing configuration
using dynamic simulation. However, the existing node placement
methods mentioned above are serial algorithms except for Ju’s
method [17]. When performing the node-based parallel finite
element calculation, these serial node distribution methods are
usually not beneficial to improving the parallel efficiency. For the
parallel CVTs method presented by Ju et al., the method may re-
quire special handling when generating boundary nodes of the
whole domain. Furthermore, the number of iterations required is
usually huge, and in an iterative process, global communication
is needed between processors. This kind of communication will
inevitably result in idle time, influencing the whole parallel effi-
ciency.
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Recently, the Node Placement method by Bubble Simulation
(NPBS) has been developed [20–22], and it has also been suc-
cessfully applied to node-based local mesh generation [23] and
anisotropic triangularmeshing problems [24]. In theNPBSmethod,
due to the short-range interaction force between bubbles, for two
relatively distant bubbles, their positions and velocities can be up-
dated simultaneously and independently during simulation, mak-
ing the NPBS method suitable for parallel environments.

Furthermore, domain decomposition (DD) techniques have
been employed in parallel node placement methods in order to
decompose a large, complex problem into many simpler subprob-
lems which can be solved in parallel. Within the context of parallel
mesh generation, the DD method, such as the Medial Axis Domain
Decomposition (MADD) [25], the coarse-grained parallel harness
method [26] and theMETIS-based DD technique [27,28] have been
developed in recent years. Within the context of parallel molecu-
lar dynamics simulations, there are a large variety of DD methods
proposed in the literature, see Refs. [29–32] and references therein.

In this paper, we focus on developing a parallel, scalable,
robust node placement method by bubble simulation (PNPBS)
using MPI communication for an arbitrary number of processors,
and the METIS-based DD technique is used. The METIS-based
DD technique [27] addresses the issue of load imbalance among
processors in the process of node placement. Furthermore, the
average speed of bubbles could decrease quickly during dynamic
simulation [21], thus the PNPBS method requires much fewer
iterations for convergence. Communication is performed every
k steps among geometrically neighboring processors, such that
the proportion of the communication time in the total time is
reduced greatly, so parallel efficiency can be improved effectively.
Furthermore, an adjacency list related to each node is also provided
which stores the information of neighboring nodes, this can be
directly used for node-based local mesh generation [12,23] and
node-based finite element calculation [9,10] when solving partial
differential equations system in parallel.

The rest of this paper is organized as follows: the NPBS method
is described briefly in Section 2, and its parallel features based
on the METIS DD scheme are investigated in detail in Section 3.
In Section 4, the numerical results of the PNPBS method are
presented. Finally, conclusions are described in Section 5.

2. Outline of node placement method by bubble simulation

In this section we give a brief overview of the node placement
method by bubble simulation (NPBS) (refer to Refs. [20,21] for
more details). The main steps of the NPBS method are given as
follows: First, an initial node set is positioned in the domain. It is
important to obtain a good initial bubble configuration for speed-
ing up the simulation. Then nodes are considered as the centers of
bubbles, and bubbles are driven by their interacting forces, until
a force-balancing configuration of bubbles is obtained. Finally the
centers of bubbleswill form a good-quality node distribution in the
domain. The main steps are discussed in the following.

2.1. Initial bubble placement

The initial distribution of the bubbles is very important to
the NPBS method. If the initial bubble configuration is very poor,
then a large number of iterative steps will be required before
achieving a stable node configuration. In the NPBS method, initial
boundary nodes are placed with the sub-binary technique, while
inner nodes are placed using rhombic cells with inside angles
of 600 and 1200 to realize a hexagonal arrangement of bubbles.
Meanwhile, the desired node density is controlled by a node-
spacing function d(x, y), which is user-defined, or be changedwith
a priori and a posterior error estimates in the adaptive numerical
computation [33].

2.2. Dynamic simulation

According to Newton’s second law of motion, the motion equa-
tion of each bubble is a second order ordinary differential equation

mẍi + cẋi = fi, i = 1 . . .N (1)

where m is the mass of the bubble, c is the damping coefficient,
N is the number of bubbles, xi is the center of bubble i, −cẋi is a
viscous damping force from the system, which makes the bubble
system converge to a stable configuration, and fi is the resultant
force exerted on bubble i by its surrounding bubbles.

For two neighboring bubbles, the interaction force tries to
maintain the ideal distance between them by exerting a repelling
force when they are too close, or an attracting force when they are
too distant. It can be approximated by [19]:

f (w) =


k0


1.25w3

− 2.375w2
+ 1.125


0 ≤ w ≤ 1.5

0 1.5 < w
(2)

where w is the ratio of the real distance and the desired distance
between two bubbles. For the system of second-order differen-
tial equations (1), a numerical method using the Euler predic-
tor–corrector formula is used, and the fourth-order Runge–Kutta
method is used in the last iteration. Because of the addition of the
damping force in the motion Eq. (1), the average speed of bubbles
tends to a final value of zero. That is to say, the bubble system could
converge to a stable configuration, as discussed in Ref. [21].

2.3. Adjacency list

In principle, all interaction forces on bubble i resulting from all
other bubbles have to be taken into account when computing the
resultant force. In practice, because of the short-range interaction
force between bubbles, an adjacency list for the bubble i including
its neighbor bubbles located within the cutoff radius r = 1.5σ
is defined, where σ is the ideal distance between bubble i and
its neighboring bubble. When calculating the resultant force,
only the interaction forces exerted by adjacent bubbles from the
adjacency list need to be considered. Since each adjacency list has
to be updated at each time step, which is very time-consuming,
the radius of this adjacency list is often extended to be 1.7σ
to reduce the frequency of updating, and each adjacency list is
usually updated every 5–8 time steps. This greatly reduces the
time consumed in searching for neighboring nodes. In the initial
establishment of the adjacency list, uniform bucket andmultilayer
bucket search methods can be used [13].

2.4. The adjustment of the bubble population

Usually, initial bubble placement cannot generate a proper
number of bubbles, and the number of bubbles is adjusted by the
overlap ratio [19] during dynamic simulation

αi =
1
ri

N
j=0

(2ri + rj − lij) (3)

where ri and rj are the ideal radii of bubble i and bubble j, lij is
the real distance between the centers of bubble i and bubble j. In
the ideal case, the standard overlap ratios of nodes on a line, on
a surface and in the internal volume are 2, 6 and 12 respectively.
So by computing the overlap ratio, we delete the bubbles whose
overlap ratios are too large, or add new bubbles near the bubbles
whose overlap ratios are too small. Finally, the population of
bubbles can be controlled dynamically.

Fig. 1 shows the final bubbles and the nodal distribution
after the dynamic adjustment of the bubble population. Local
refinement is implemented through controlling the node spacing
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