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a b s t r a c t

When dealing with large numbers of cells in biophysical simulations, it is important to properly manage
the different substances that diffuse and react in and around cells. Although in an object-oriented
programming environment it seems more natural to define cells as the basic objects, it turns out that
individual substances are better suited to take this role. Here we describe the biophysical problem and
our computational solution, and display the results obtained with a toy model. We find that the new
implementation does not decrease performance and yet it leads to a much better structured andmodular
code. This will make more realistic programs with many molecular pathways much more modular and
readily extendible.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Simulations of the biochemistry of large aggregates of cells, like
the one described in Refs. [1–4], require the solution of large reac-
tion–diffusion problems. The individual cells – and their surround-
ing environments – act like small spatial compartments,withmany
chemicals flowing in and out [5]. Some of these chemicals are con-
fined within cells, while others can pass the cell membranes only
by the action of facilitated diffusion processes, mediated by mem-
brane proteins. These spatial compartments act as small bioreac-
tors, where chemicals react and determine cells’ life and death.
The diffusion equations for each chemical are naturally discretized
on the geometrically and topologically disordered network defined
by individual cells, as shown in Fig. 1. This disordered network of
cells is an essential element of the simulation if we wish to in-
clude the biomechanics of cells as well as their biochemistry, and
it brings with it important structural problems. As the cluster of
cells grows and the neighbors of an individual cell change, so does
the structure of the corresponding system of reaction–diffusion
equations—the number of equations becomes larger and larger,
and terms in each equation change (again, see Figs. 1 and 2). More-
over, the chemicals involved in the simulation are strongly cou-
pled in those small, natural bioreactors that are the individual cells.
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Therefore in such an object-oriented code it is straightforward to
define the cells themselves as the basic objects, and the masses of
chemicals as attributes (internal data) of cells. This is in stark con-
trast to simulations like those that utilize cellular automata [6],
or recast the whole process of tumor growth into fixed systems
of equations [7], and which more closely resemble classical reac-
tion–diffusion problems (see, e.g., [8]). Our interest in this problem
is very practical, as we seek computational solutions in our project
that aims to simulate small avascular solid tumors [1–5]. We have
started this complex computational task with a basic description
of the internal machinery of cells, however we aim at a gradual in-
crease of the biological complexity, with the inclusion of many ad-
ditional molecular circuits that are still missing from the present
version of the program (Fig. 3).

In the C++ code that implements the model [3], cell objects are
stored in turn in structures like vectors, or in STL containers like
STL vectors or lists (or equivalently in Boost containers [9]), and
the solution of the reaction–diffusion equations requires access to
the internal data of the elements of the vectors or lists of cells—
and possibly their storage into temporary vectors. Thus, although
cells seem to be the most natural objects in this context, they
also lead to a very cumbersome and ineffective solution of the
reaction–diffusion equations—and increasingly so, as the number
ofmolecular species, and thus of temporary vectors, grows inmore
detailed versions of the simulation programs.

Another important adverse effect on the code is the absence of
modularity in the treatment of the different chemicals, that comes
from the scalar nature of the data inside the cell objects.
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Fig. 1. Detailed view of cells, early in one simulation run of the program described in [3]. In these figures the cells are represented by spheres, and the run started with a
single cell. These snapshots show the same aggregate after 100 hs of simulated time (left panel), and ten hours later (right panel). The cells are actively proliferating and there
are 29 cells in the left panel, and 32 cells in the right panel. The straight segments represent the edges of the Delaunay triangulation of the cell centers, and they connect the
center of each cell to its nearest neighbors; cell radii have been slightly reduced to better show the edges of the triangulation. As the aggregate of cells grows, cells migrate
under the push of neighboring cells, and the network of connections changes. The two marked, darker cells are originally in contact (left panel), but they move to different
positions and are no longer in contact after ten hours of simulated time. The different number of cells and the different connectivity mean that the differential system that
describes reaction–diffusion in the cell cluster changes from one snapshot to the next.

Fig. 2. The network of interconnected cells in a larger spheroid. This figure shows
the same cluster of cells of Fig. 1, after 211 h of simulated time, and the edges of the
Delaunay triangulation of the cells’ centers. There are 575 cells in this cluster, and
the network of connections has becomemuchmore complex. This only hints at the
complexity of the structure which eventually contains several hundred thousands
of cells.

These considerations suggest a new representation of the dif-
ferent chemicals as STL vectors – i.e., expandable vectors, which
can accommodate a growing number of proliferating cells – where
the vector index corresponds to a given cell. In this ‘‘reversed logic’’
the chemicals themselves become the basic objects, while the ag-
gregate of cells is a mere spatial scaffolding. Here we show how to
set up a modular framework to manipulate them.

In this paper we describe the implementation of the new com-
putational designwith the aid of a 2-dimensional toymodel, which
is illustrated in Fig. 4. It consists of a set of cells (represented by cir-
cles in Fig. 4) arranged on a 2-dimensional grid on which the diffu-
sion of two differentmolecular species, named A and B takes place.
Wewish to stress that here we choose a 2-dimensional lattice only
as a practical testbed, while the actual application shall utilize a
disordered lattice in a much more complex setting.

Fig. 3. Schematic layout of program described in [3] that simulate the growth of
small avascular solid tumors. After initialization the main loop starts (enclosed in
dashed rectangle). The main loop includes several inner loops over cells (denoted
by rectangles with arrows); metabolism and mechanical motion do not interact
directly and can be calculated by different OpenMP threads. This scheme shows
that cell data are repeatedly retrieved from the structure in a cell-based abstraction,
leading to an awkward code.

The initial concentrations of both chemicals are set to 1 (arbi-
trary units) in the peripheral cells and remain constant over time,
whereas the inner cells have vanishing initial concentrations. Each
chemical diffuses through cells and can take part to reaction pro-
cesses; the dynamics of concentrations is described by second or-
der partial differential equations that are solved numerically. In
this example we take a reaction part which is sufficiently sim-
ple to avoid an unnecessary emphasis on implementation details,
and yet sufficiently close to actual biology to make it realistic. In
particular we take a simple Michaelis–Menten dynamics for the
first substrate (A), and a double-substrate Michaelis–Menten dy-
namics that couples A and B. Finally, we remark that while the 2-
dimensional lattice is easy to visualize, it is also close to real in vitro
biological systems.
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