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a b s t r a c t

A compounded data structure is developed to optimize the simulation of colloidal aggregation using
the on-lattice Cluster–Cluster Aggregation (CCA) model. Brownian motion, collision detection and
aggregation as the basic operations in the CCA simulation are illustrated and evaluated based on the
compounded data structure, respectively. The critical improvement of our algorithm is in distinguishing
any selected clusters consisting particles and ascertaining their neighboring positions efficiently in
simulation, which was traditionally performed by the exhaustive search in the whole system. Analytical
results show that the new algorithm achieves linear computational complexity in each of the main
operations, which is very appealing in performance optimization in using on-lattice CCA simulations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Colloidal aggregation is an important environmental phe-
nomenon as pollutants often are present as colloids in water and
aerosols in the atmosphere [1–3]. The process startswith a suspen-
sion of finely divided particulates at a low initial volume fraction in
which stable colloids must overcome the repulsive energy barrier
between two particles to coalesce and grow in size [3]. The Clus-
ter–Cluster Aggregation (CCA) model assumes that initially a col-
lection of equal sized individual spherical particles are randomly
dispersed in a box at low concentrations and then these particles
are allowed to self-diffuse in Brownian motion by random walk,
collide, and form clusters [4,5]. The CCAmodel is developed to sim-
ulate the particle growingmechanism [6–9]. It iswidely adopted to
describe the aggregation of colloids and aerosols with good agree-
mentswith experimental results [10–14]. The simulated outcomes
provide insights in understanding the aggregation process and de-
termine important features such as fractal dimension and structure
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factor of clusters, shapes of cluster mass distribution, and aggrega-
tion kinetics [12].

The CCA models perform well in small-scale simply simula-
tions. The computation processes however challenge the capabil-
ities of current day digital computers requiring large memories
and high speed processors. The computational complexity is a sig-
nificant handicap to simulate colloidal systems comparable with
real-world experimental data [15,16]. Hawick, etc. had publicized
a serious of technical reports about the simulation method, one
technical report similar to this research discussed space parti-
tioning methods for the CCA simulation and demonstrate com-
plexity improvements by taking advantage of information about
locations and interaction distances of the microscopic model
components [16]. Kusaka, etc. studied CCA simulation in a con-
centrated suspension, reported on the characteristics of the col-
lision radius of fractal aggregates, and discussed aggregation
kinetics based on the value of the estimated collision radius [13].
The CCAmodel is authentically a recognized andwidely used inge-
nious model to mimic fractal aggregation. However, emphasis has
long been focused more on the structure of the aggregates and the
kinetics of aggregation processes than on the algorithm efficiency.

The conventional algorithm of a CCA model is depicted in
Fig. 1 [17] in which the Brownian movement, collision detection
and aggregation are the main steps. The simulation starts with N
non-overlapping identical particles distributed randomly in a cubic
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Fig. 1. Algorithmic flow chart of on-lattice CCA simulations.

box with side-lengths of L. In Brownian movement, all particles
are in motion and all particles have chance to collide in realistic
situations. For the CCA models, Meakin separates and serializes
the Brownian movements by adopting the Metropolis sampling
method [4]. It lies on the basic premise that in simulations only
one randomly selected particle (or cluster) moves at a time and
with the distance identical to diameter of the primary particle [6].

To realize the CCA simulation, a three dimensional array,
CUBE[L][L][L], was used to represent the cubic box. Each particle in
the cubic box occupies an element of the three dimensional array
and are labeled with a different integer (>0), therefore on-lattice.
When particles and/or clusters collide and aggregate, all particles
in the resulting cluster have the same label Fig. 2. The progression
of Brownian movement and aggregation are realized by updating
the labels of the corresponding array elements.

A critical issue of the simulation is how to efficiently distinguish
all of the particles in any selected cluster based on the three
dimensional array CUBE[L][L][L] when the cluster is to be moved.
Similarly, there are difficulties in the process of collision detection
to locate all neighboring positions of the cluster. For example, if a
cluster labeledwith iwas selected to undergo Brownianmovement
i.e. self-diffuse, all elements that are identified by the label i in
the three dimensional array CUBE[L][L][L] must be tested. It is
a time-consuming process of O(L3) computational complexity in
three dimensional simulations because an exhaustive search of the
entire system must be performed upon each simulated Brownian
motion. According to the flowchart (Fig. 1) only the selected cluster
need to be checked in the collision detection step. It nevertheless
remains to be a time-consuming process because the clusters are
quite anomalous and the labels of particles in the selected cluster
have to be checked for collision detection one by one with those
in all other clusters. A three dimensional array CUBE[L][L][L] is not
efficient for the on-lattice CCA simulations.

Fig. 2. Single particles and clusters in the cube (in part) are distinguished by the
labels marked on the little boxes, which are stored in the corresponding array
elements.

We have developed a compounded data structure for the on-
lattice CCA simulation that improves the performance efficiency of
the simulation algorithm. In the following sections we delineate
the simulation model, new data structure, algorithm realization,
and efficiency evaluation.

2. Simulation model

The details of the CCA model are given as follows [6]: we take
the unit a = 1 for a lattice constant. In the model, N particles are
randomly distributed in a cubic boxwith side-length of L. Thus, the
particle concentration c becomes:

c = N/L3. (1)

Assuming the shape effects can be ignored, the diffusion coefficient
Di of a cluster (consists of i particles) is proportional to the inverse
of its gyration radius Rgi [18]:

Di = D1 × R1/Rgi (2)

where D1 is the diffusion coefficient of the single particle with the
gyration radius of R1.

According to the Metropolis sampling method, one cluster will
be selected in each step for a potential movement. The selection is
accepted or rejected based on the probability Pmove [4]:

Pmove = Di/Dmax (3)

where Di is the diffusion coefficient of the selected cluster, Dmax is
the maximum diffusion coefficient for any cluster in the system.
For the potential movement, a random number x uniformly
distributed over the range [0, 1] is generated and the cluster is
moved only if x < Pmove.

The moving direction is also randomly chosen among six direc-
tions. If the cluster does not collide with another one, the displace-
ment is performed and the algorithm goes on by choosing another
cluster for the next step. If a collision occurs between two clusters
(one consists of i particles, and another consists of j particles) they
stick together forming a new larger cluster with the sticking prob-
ability Pij [4,12]:

Pij = P1 × (i × j)σ (4)
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