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a b s t r a c t

Synchrotron emission from runaway electrons may be used to diagnose plasma conditions during a
tokamakdisruption, but solving this inverse problem requires rapid simulation of the electrondistribution
function and associated synchrotron emission as a function of plasma parameters. Here we detail
a framework for this forward calculation, beginning with an efficient numerical method for solving
the Fokker–Planck equation in the presence of an electric field of arbitrary strength. The approach is
continuum (Eulerian), and we employ a relativistic collision operator, valid for arbitrary energies. Both
primary and secondary runaway electron generation are included. For cases in which primary generation
dominates, a time-independent formulation of the problem is described, requiring only the solution of a
single sparse linear system. In the limit of dominant secondary generation, we present the first numerical
verification of an analyticmodel for the distribution function. The numerical electrondistribution function
in the presence of both primary and secondary generation is then used for calculating the synchrotron
emission spectrumof the runaways. It is found that the average synchrotron spectra emitted from realistic
distribution functions are not well approximated by the emission of a single electron at the maximum
energy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the decrease in the Coulomb collision cross section
with velocity, charged particles in an electric field can ‘‘run away’’
to high energies. In tokamaks, the resulting energetic particles
can damage plasma-facing components and are expected to be a
significant danger in the upcoming ITER experiment. Electrons are
typically the species for which runaway is most significant [1,2],
but runaway ions [3] and positrons [4,5] can also be produced.
Relatively large electric fields are required for runaway production,
and in tokamaks these can arise during disruptions or in sawtooth
events. Understanding of runaway electrons and their generation
and mitigation is essential to planning future large experiments
such as ITER.

Runaway electrons emit measurable synchrotron radiation,
which can potentially be used to diagnose the distribution func-
tion, thereby constraining the physical parameters in the plasma.
The runaway distribution function and associated synchrotron
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emission depend on the time histories of the local electric field E,
temperature T , average ion charge Z , and density n. To infer these
quantities (and the uncertainty in these quantities) inside a dis-
rupting plasma using the synchrotron emission, it is necessary to
runmany simulations of the runawayprocess, scanning the various
physical parameters. Tomake such a scan practical, computational
efficiency is important.

To this end, in this work we demonstrate a framework for rapid
computation of the runaway distribution function and associated
synchrotron emission for given plasma parameters. The distribu-
tion function is computed using a newnumerical tool named CODE
(COllisional Distribution of Electrons). Physically, the distribution
function is determined by a balance between acceleration in the
electric field and collisions with both electrons and ions. The cal-
culation in CODE is fully relativistic, using a collision operator
valid for both low and high velocities [6] and it includes both pri-
mary and secondary runaway electron generation. If primary run-
away electron generation dominates, CODE can be used in both
time-dependent and time-independent modes. The latter mode of
operation, in which a long-time quasi-equilibrium distribution
function is calculated, is extremely fast in that it is necessary only
to solve a single sparse linear system. Due to its speed and sim-
plicity, CODE is highly suitable for coupling within larger more
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expensive calculations. Besides the inverse problem of determin-
ing plasma parameters from synchrotron emission, other such ap-
plications could include the study of instabilities driven by the
anisotropy of the electron distribution function, and comprehen-
sive modeling of disruptions.

Other numerical methods for computing the distribution
function of runaways have been demonstrated previously, using
a range of algorithms. Particle methods follow the trajectories of
individual marker electrons. Deterministic particle calculations [7]
can give insight into the system behavior but cannot calculate
the distribution function, since diffusion is absent. Collisional
diffusion may be included by making random adjustments to
particles’ velocities, an approach which has been used in codes
such as ASCOT [8] and ARENA [9]. For a given level of numerical
uncertainty (noise or discretization error), we will demonstrate
that CODE ismore than 6 orders ofmagnitude faster than a particle
code on the same computer. Other continuum codes developed to
model energetic electrons include BANDIT [10], CQL3D[11,12] and
LUKE [13,14]. These sophisticated codes were originally developed
to model RF heating and current drive, and contain many features
not required for the calculations we consider. For example, CQL3D
contains ∼90,000 lines of code and LUKE contains ∼118,000
lines, whereas CODE contains <1200 lines (including comments).
While future more elaborate modeling may require the additional
features of a code like CQL3D or LUKE, for the applications we
consider, we find it useful to have the nimble and dedicated tool
CODE. For calculations of non-Maxwellian distribution functions
in the context of RF heating, an adjoint method [15] can be a
useful technique for efficient solution of linear inhomogeneous
kinetic equations. However, the kinetic equation we will consider
is nonlinear (if avalanching is included) and homogeneous, so the
adjoint method is not applicable.

In several previous studies, a single particle with a representa-
tive momentum and pitch-angle is used as an approximation for
the entire runaway distribution [16,17] when computing the syn-
chrotron emission. In this paper, we present a computation of the
synchrotron radiation spectrum of a runaway distribution in var-
ious cases. By showing the difference between these spectra and
those based on single particle emission we demonstrate the im-
portance of taking into account the entire distribution.

The remainder of the paper is organized as follows. In
Section 2 we present the kinetic equation and the collision
operator used. Section 3 details the discretization scheme and
calculation of the primary runaway production rate, with typical
results shown in Section 4. The avalanche source term and its
implementation are described in Section 5. In this section we also
demonstrate agreementwith an analyticmodel for the distribution
function [18]. Computation of the synchrotron emission spectrum
from the distribution function is detailed in Section 6, and
comparisons to single-particle emission are given. We conclude
in Section 7.

2. Kinetic equation and normalizations

We begin with the kinetic equation

∂ f
∂t

− eEb · ∇pf = C{f } + S. (1)

Here, −e is the electron charge, E is the component of the electric
field along the magnetic field, b = B/B is a unit vector along
the magnetic field, ∇p is the gradient in the space of relativistic
momentum p = γmv, γ = 1/


1 − v2/c2, v = |v| is the speed,m

is the electron rest mass, c is the speed of light, C is the electron
collision operator, and S represents any sources. All quantities
refer to electrons unless noted otherwise. Eq. (1) is the large-
aspect-ratio limit of the bounce- and gyro-averaged Fokker–Planck

equation (Eq. (2) in [19]). Particle trapping effects are neglected,
which is reasonable since runaway beams are typically localized
close to the magnetic axis. We may write b · ∇pf in (1) in terms of
scalar variables using

b · ∇pf = ξ
∂ f
∂p

+
1 − ξ 2

p
∂ f
∂ξ

(2)

where p = |p|, and ξ = p · b/p is the cosine of the pitch
angle relative to the magnetic field. The distribution function is
defined such that the density n is given by n =


d3p f , so f

has dimensions of (length × momentum)−3, and we assume the
distribution function for smallmomentum to be approximately the
Maxwellian fM = nπ−3/2(mve)

−3 exp(−y2) where ve =
√
2T/m

is the thermal speed, and y = p/(mve) = γ v/ve is the normalized
momentum.

We use the collision operator from Appendix B of Ref. [6]. This
operator is constructed to match the usual nonrelativistic test-
particle operator in the limit of v ≪ c , and in the relativistic limit it
reduces to the operator from Appendix A of Ref. [20]. The collision
operator is

C{f } =
1
p2

∂

∂p
p2


CA

∂ f
∂p

+ CF f


+
CB

p2
∂

∂ξ
(1 − ξ 2)

∂ f
∂ξ

(3)

where

CA =
Γ

v
Ψ (x), (4)

CB =
Γ

2v


Z + φ(x) − Ψ (x) +

δ4x2

2


, (5)

CF =
Γ

T
Ψ (x), (6)

δ = ve/c , x = v/ve = y/

1 + δ2y2, Z is the effective ion charge,

Γ = 4πne4 lnΛ = (3
√

π/4)νeev
3
em

2 (7)

is identical to the Γ defined in Refs. [6,20,21], νee = 4
√
2πe4n

lnΛ/(3
√
mT 3/2) is the usual Braginskii electron collision fre-

quency, φ(x) = 2π−1/2
 x
0 exp(−s2) ds is the error function, and

Ψ (x) =
1
2x2


φ(x) − x

dφ
dx


(8)

is the Chandrasekhar function. In the nonrelativistic limit δ → 0,
then y → x, and (3) reduces to the usual Fokker–Planck test-
particle electron collision operator.

The collision operator (3) is approximate in several ways. First,
it originates from the Fokker–Planck approximation in which
small-angle collisions dominate, which is related to an expansion
in lnΛ ≫ 1. Consequently, the infrequent collisions with large
momentumexchange are ignored, so the secondary avalanche pro-
cess is not included at this stage, but will be addressed later in
Section 5. Also, the modifications to the Rosenbluth potentials as-
sociated with the high-energy electrons are neglected, i.e. colli-
sions with high-energy field particles are ignored.

The kinetic equation is normalized by multiplying through
with m3v3

eπ
3/2/(νeen), and defining the normalized distribution

function

F = (π3/2m3v3
e/n)f (9)

so that F → 1 at p → 0. We also introduce a normalized electric
field

Ê = −eE/(mveνee) (10)

which, up to a factor of order unity, is E normalized by the Dreicer
field. The normalized time is t̂ = νeet and the normalized source
is Ŝ = Sm3v3

eπ
3/2/(νeen). We thereby obtain the dimensionless



Download English Version:

https://daneshyari.com/en/article/10349755

Download Persian Version:

https://daneshyari.com/article/10349755

Daneshyari.com

https://daneshyari.com/en/article/10349755
https://daneshyari.com/article/10349755
https://daneshyari.com

