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a b s t r a c t

The implementation of the orbital minimization method (OMM) for solving the self-consistent Kohn–
Sham (KS) problem for electronic structure calculations in a basis of non-orthogonal numerical atomic
orbitals of finite-range is reported. We explore the possibilities for using the OMM as an exact cubic-
scaling solver for the KS problem, and compare its performance with that of explicit diagonalization
in realistic systems. We analyze the efficiency of the method depending on the choice of line search
algorithm and on two free parameters, the scale of the kinetic energy preconditioning and the
eigenspectrum shift. The results of several timing tests are then discussed, showing that the OMM can
achieve a noticeable speedup with respect to diagonalization even for minimal basis sets for which
the number of occupied eigenstates represents a significant fraction of the total basis size (>15%). We
investigate the hard and soft parallel scaling of the method on multiple cores, finding a performance
equal to or better than diagonalization depending on the details of the OMM implementation. Finally,
we discuss the possibility of making use of the natural sparsity of the operator matrices for this type of
basis, leading to a method that scales linearly with basis size.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last two decades, density-functional theory [1,2] (DFT)
has become a ubiquitous tool for studying molecular and con-
densedmatter systems at the atomic level, with applications rang-
ing from the Earth sciences to nanotechnology [3,4]. This is due in
no small part to the proliferation of fast, accurate, easily available
and user friendly software packages for performing DFT calcula-
tions (see, e.g., Refs. [5–12]). Much work has gone into developing
the methods used by such codes, and ongoing optimization of the
underlying algorithms is essential to keep up with the possibilities
offered by new computer architectures [13–16].

Within the standard Kohn–Sham (KS) approach [2], the many-
electron problem is reduced to a self-consistent eigenvalue prob-
lem with an effective Hamiltonian. When solving the problem in a
basis, either repeated explicit diagonalizations (for small enough
bases), or one of a number of iterative minimization algorithms
[5,17–19] can be used. The latter proceed either byminimizing the
KS total energy functional directly, or as an alternative to diago-
nalization for a fixedHamiltonian, within an outer self-consistency
cycle for the electronic density. The use of an iterative algorithm of
either form is essential for plane-wave methods, as the large num-
ber of basis functions/atom makes diagonalization prohibitively
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expensive for all but the smallest systems. One of the main ad-
vantages of using such algorithms is that only the occupied sub-
space needs to be computed, and for a plane-wave basis this
typically corresponds to a very small fraction (<1%) of the total
number of eigenstates. Methods based on localized atomic-like or-
bitals [6,7,11], on the other hand, employ a much smaller number
of basis functions/atom; in such cases, therefore, diagonalization
is feasible even for large systems. Furthermore, the fraction of oc-
cupied eigenstates is much larger than for plane waves (10%–20%),
making diagonalization not just competitive but indeed more effi-
cient than most iterative algorithms.

In this paper, we present our implementation of an iterative
minimization algorithm,whichwe refer to as the orbitalminimiza-
tion method (OMM) following Refs. [15,20], as an alternative to
explicit diagonalization in the SIESTA [7] code. The OMM works
by finding the N/2 Wannier functions (WFs) describing the oc-
cupied subspace of an N-electron system by direct unconstrained
minimization of an appropriately-constructed energy functional.
This functional was originally proposed independently by Mauri,
Galli and Car [21,22], and Ordejón et al. [23,24], in the context of
linear-scaling DFT methods [15] with spatially confined WFs. In
fact, a serial implementation of the linear-scaling OMM was an
integral part of the original version of SIESTA; nowadays, how-
ever, most applications of the code employ diagonalization with
LAPACK [25]/ScaLAPACK [26]. It is important to note that our new
implementation is completely separate from this old one, and
is not a linear-scaling solver; our aim, instead, is to explore the
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potential of the OMM as a conventional cubic-scaling iterative
algorithm, which solves the KS problem exactly without introduc-
ing spatial truncations. Although previous investigations of cubic-
scaling iterative algorithms in SIESTA (both Jacobi–Davidson [27]
and Lanczos-like [28]) have found that a very small fraction of oc-
cupied eigenstates is needed to rival the efficiency of diagonal-
ization [29], we show that this is indeed possible with the OMM
even for a standard double-ζ basis with a single polarization shell
(dζ + p), for which the fraction of occupied eigenstates is signifi-
cant, almost 20%.

The use of the OMMas a cubic-scaling DFT solver has previously
been described for a plane-wave basis by Pfrommer, Demmel and
Simon [19] (alongside closely related methods), and implemented
in the PARATEC [30] plane-wave code. In contrast, SIESTA makes
use of a minimal basis of numerical atomic orbitals (NAOs) of
finite range, leading to formally sparse Hamiltonian and overlap
matrices. Our implementation is therefore somewhat different, in
particular in the choice of preconditioner. Furthermore, the natural
sparsity of the operators in our case can be used to eliminate the
most expensive type of matrix–matrix multiplication present in
the algorithm, leading to qualitatively different scaling behavior
with basis size.

The rest of the paper is organized as follows: in Section 2, we
describe in detail the implementation of the OMM and investigate
its convergence properties. We give a theoretical overview of the
method (Sections 2.1 and 2.2), describe how the number of matrix
operations can be minimized by careful consideration of the line
search algorithm (Section 2.3), discuss the issue of precondition-
ing (Section 2.4) and empirically assess its efficiency (Section 2.5),
detail the use of sparse–dense matrix operations (Section 2.6), and
comment on the issue of fractional occupancies (Section 2.7). In
Section 3, we present scaling tests performed in serial and in par-
allel, and then investigate the hard and soft parallel scaling of the
method (Section 3.1), and the scaling with basis size (Section 3.2).
Finally, in Section 4, we give a summary of our main conclusions.

2. Formalism and algorithmic considerations

2.1. OMM overview

Wework in a basis ofm finite-rangeNAOs {φµ(r)}, typically (but
not necessarily) atom-centered, and want to solve the generalized
eigenvalue problem

Hcµ = εµScµ, (1)

where

Hµν =

φµ

 ĤKS
[ρ] |φν⟩ , (2)

and

Sµν =

φµ|φν


. (3)

Within a single inner self-consistency (SCF) cycle, H depends on
the fixed electronic density ρ(r), and within an outer molecular
dynamics (MD) step, both H and S depend on the atomic positions
{RI}.

Explicit diagonalization computes the KS eigenenergies {εµ}

and the matrix of KS eigenvectors cµ, from which the full density
matrix can be obtained. Instead, in the OMM we define a set of
n = N/2 non-orthogonal WFs {χi(r)}:

|χi⟩ =

m
µ=1

Cµ

i

φµ


. (4)

The reduced subspace operators defined by the WFs are then, in
matrix form:

HW = CHHC (5)

and

SW = CHSC. (6)

We can also define a subspace energy E, which, when minimized
with respect to the coefficients {Cµ

i }, will (by the variational
principle) give the sum of the lowest n eigenvalues of the original
problem [19]:

E [C] = 2Tr

S−1
W HW


(7)

(we include a factor of two for spin degeneracy).
The minimization of the functional given in Eq. (7) has the ad-

vantage of being unconstrained, since no orthonormalization is
required. Nevertheless, performing such a minimization is com-
putationally demanding due to the presence of the inverse
overlap S−1

W , which needs to be recomputed at every trial step; fur-
thermore, thismeans that the line search in a steepest descent (SD)
or conjugate gradient (CG) algorithm has to be solved numerically.

The OMM substitutes Eq. (7) with a different functional, one
that does not contain the inverse operation:

Ẽ [C] = 2Tr {[In + (In − SW)]HW} = 4Tr {HW} − 2Tr {SWHW} . (8)

It can be shown that this new functional drives theWFs towards or-
thonormality as it is minimized [21–24]; at the minimum, there-
fore, SW = In, and Ẽ [C0] = E [C0] = E0, where C0 describes the
occupied subspace, and E0 is the ground-state KS (band) energy.
Eq. (8) can be derived either by replacing the inverse overlap ma-
trix in Eq. (7) with a first-order Taylor expansion [21], or by using a
Lagrange multiplier approach to enforce the desired orthonormal-
ity requirement on Tr {HW} at the solution [23].

The OMM functional, therefore, allows for unconstrained min-
imization without requiring any matrix inversion; this is partic-
ularly suitable for developing linear-scaling methods, since the
inverse of a formally sparse SW matrix (obtained by constraining
the radii of the WFs) will not itself be sparse. However, the OMM
in its original form was quickly abandoned by the linear-scaling
community, as the localization of the WFs introduces many local
minima that were found to lead to serious difficulties in obtain-
ing the true ground state [22,24,31]. Ultimately, this led to the de-
velopment and implementation of various generalized OMMs to
overcome the convergence problem [20,31–33]. For non-linear-
scaling implementations of the OMM, however, this problem does
not present itself, as theWFs are not spatially constrained; the sim-
plicity of the original functional is therefore ideal in our case for
developing an efficient algorithm.

2.2. Eigenspectrum shift

As shown by Ordejón et al. [24] and Kim, Mauri and Galli [31],
a stationary point of the OMM functional is obtained when all
the WFs are either eigenvectors of Eq. (1) or zero, subject to
any arbitrary unitary transformation between them. If all the
corresponding eigenvalues are negative, this point will be a
minimum; however, if any of them are positive, it will become
a saddle point. Therefore, the stationary point at C0 will be a
minimumprovided that all the occupied eigenvalues are negative.1

Because of this, it is necessary to shift the eigenspectrum by
η > εn for theminimization procedure to be able to find the correct
ground state. This is achieved by the transformation

H → H − ηS, (9)

1 Furthermore, it can be shown that it will only be a global minimum if the entire
eigenspectrum of Ĥ is negative; otherwise, it will be a local minimum, and the
functional will have no lower bound.
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