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a b s t r a c t

We present a Maple implementation of the well known global approach to time series analysis and some
further developments designed to improve the computational efficiency of the forecasting capabilities
of the approach. This global approach can be summarized as being a reconstruction of the phase space,
based on a time ordered series of data obtained from the system. After that, using the reconstructed
vectors, a portion of this space is used to produce amapping, a polynomial fitting, through aminimization
procedure, that represents the system and can be employed to forecast further entries for the series.
In the present implementation, we introduce a set of commands, tools, in order to perform all these
tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase
space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all
these and produces the prediction of the next entries. For the non-standard algorithms, we here present
two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step
forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and
AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings
used on the commands just mentioned above.

Program summary

Program title: TimeS
Catalogue identifier: AERW_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 3001
No. of bytes in distributed program, including test data, etc.: 95018
Distribution format: tar.gz
Programming language: Maple 14.
Computer: Any capable of running Maple
Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7.
RAM: 128 MB
Classification: 4.3, 4.9, 5
Nature of problem:
Time series analysis and improving forecast capability.
Solution method:
The method of solution is partially based on a result published in [1].
Restrictions:
If the time series that is being analyzed presents a great amount of noise or if the dynamical systembehind
the time series is of high dimensionality (Dim ≫ 3), then the method may not work well.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Unusual features:
Our implementation can, in the cases where the dynamics behind the time series is given by a system of
low dimensionality, greatly improve the forecast.
Running time:
This depends strongly on the command that is being used.
References:
[1] Barbosa, L.M.C.R., Duarte, L.G.S., Linhares, C.A. and da Mota, L.A.C.P., Improving the global fitting
method on nonlinear time series analysis, Phys. Rev. E 74, 026702 (2006).
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1. Introduction

For any observed system, physical or otherwise, one generally wishes to make predictions on its future evolution. Sometimes, very
little is known about the system. Possibly, the dynamics behind the phenomenon being studied is unknown, and one is given just a time
series of one (or a few) of its parameters. Therefore, performing a time-series analysis is the best one can do in order to learn the properties
of the phenomenon. Its relevance may be gauged by the existence of extensive studies in a great diversity of branches of knowledge, in
physics as well as in economics and the stock exchange, meteorology, oceanography, medicine, etc.

A time series is normally taken as a set of numbers that are the possible outcomes ofmeasurements of a given quantity, taken at regular
intervals. In reality, however, the assumption that the time series reflects in someway the underlying dynamics of the systems isworsened
by the fact that the measured data usually contain irregularities. These may be due to a random external influence on a linear system, a
noise (induced possibly by the measuring apparatus or other sources of contamination) which gets mixed with the desired information,
thereby hiding it. But it maywell be that they appear as amanifestation of low-dimensional deterministic chaos resulting from an intrinsic
nonlinear dynamics governing the quantity under study (over which a random noise may also be superimposed), with the characteristic
sensitivity to initial conditions.

If the time series is the only source of information on the system, prediction of the future values of the series requires a modeling of the
system’s (perhaps nonlinear) dynamical law through a set of differential equations or through discrete maps. However, it is even possible
that we do not knowwhether themeasured quantity is the only relevant degree of freedom (frequently it is not) of the dynamical problem,
nor how many of them there are.

Both noise-contaminated linear and nonlinear systems have nevertheless been studied, with a reasonable degree of success, employing
statistical tools, chaos-theory concepts, together with time-series analyses [1–4]. Given a time series, one should ask first whether it
represents a causal process or whether it is stochastic. Tools have been developed to decide upon this fundamental question (see [5,6]). In
the case of a series originated from a low-dimensionality chaotic dynamics, traditional linear methods of analysis are not adequate, but an
analysis apparatus was devised for applications to such nonlinear systems [5,6] and we will not be concerned with stochastic processes
in this paper.

Methods for dealing with nonlinear time series fall mainly into two categories: local or global methods. Local methods are based on the
assumption that,while in the long runnearby trajectories on thephase space diverge considerably, they staywithin the sameneighborhood
for a while. One may conjecture that to predict the next step in a time series, a good indication should come from the previous visits the
system had made to the phase space neighborhood containing the ‘‘last point’’ of the series. An average of the behavior of the system for
neighboring points, with aminimization of the distance in the phase space between them, gives good results for the next-step forecasting.

Global methods, on the other hand, postulate a functional form for the dynamics to be valid for any time. Usually one considers
polynomials of a suitable degree and one should devise a convenient way to estimate its coefficients.

Nonlinear analysis of time series does not rely on the original maps of the system, but on its time-delay reconstruction. All discussions on
the nonlinear treatment of time series make use of this reconstruction scheme. Some classic references dealing with the subject are [1,7].
This method allows one to reconstruct the phase space of the system with reasonable accuracy, using the information contained in the
series only.

Lorenz [8] has shown that dynamical systems of low dimensionality could present strange attractors in their phase spaces. Takens [9]
has proposed a method to reconstruct such phase spaces from the knowledge of a time series obtained from the system. He demonstrated
that the original attractor and the reconstructed one are characterized by the same asymptotic properties and topological characteris-
tics [10,11]. Based on this result, if one is given a time series, we have to reconstruct the attractor in the phase space of the system in order
to analyze its properties.

This paper certainly does not intend to cover, in any sense, the complete analysiswhichwould be needed for an experimentally obtained
nonlinear time series. Before beginning the reconstruction proper, a real-life time series should be cleaned from any random noise and
regularized if themeasurements were taken at uneven times; also, one should estimate the adjustable parameters themethod introduces:
the dimension of the delay coordinate space and the delay time. Our intention here is to concentrate only on the forecasting algorithm,
for which we have developed a program for the Maple user. Therefore, we first test it not on a ‘‘real’’ time series, but on a mathematically
defined one, namely, the series provided by the well-known Lorenz system. In this way, we avoid having to deal with noise and we know
already the dimension of the vector space (it is the number of degrees of freedom of the system). Besides, as we know the dynamical law
behind the time series, we may check the results of our predictions by comparing themwith the sequence generated by the law itself and
estimate how much the predictions (for one, two, or more steps in the future) deviate from the sequence. However, we also apply the
algorithm to time series obtained from actual measurements, on which an elimination of the noise was performed, although we will not
describe this point here.

Forecasting obtained with the algorithm proposed in this paper is compared with results from both the local and global methods
computed in the traditional way. We achieve, for the mathematical series we have studied so far, an impressive error reduction with our
method.
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