Computer Physics Communications 184 (2013) 456-468

COMPUTER PHYSICS
COMMUNICATIONS

Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Multi-physics simulations using a hierarchical interchangeable
software interface

Simon F. Portegies Zwart**, Stephen L.W. McMillan®, Arjen van Elteren?, F. Inti Pelupessy?,
Nathan de Vries*®

a Sterrewacht Leiden, P.O. Box 9513, 2300 RA Leiden, The Netherlands
b Department of Physics, Drexel University, Philadelphia, PA 19104, USA

ARTICLE INFO ABSTRACT

Article history:

Received 11 June 2012

Received in revised form

17 September 2012

Accepted 20 September 2012
Available online 26 September 2012

We introduce a general-purpose framework for interconnecting scientific simulation programs using
a homogeneous, unified interface. Our framework is intrinsically parallel, and conveniently separates
all component numerical modules in memory. This strict separation allows automatic unit conversion,
distributed execution of modules on different cores within a cluster or grid, and orderly recovery from
errors. The framework can be efficiently implemented and incurs an acceptable overhead. In practice, we
measure the time spent in the framework to be less than 1% of the wall-clock time. Due to the unified
structure of the interface, incorporating multiple modules addressing the same physics in different ways
is relatively straightforward. Different modules may be advanced serially or in parallel. Despite initial
concerns, we have encountered relatively few problems with this strict separation between modules,
and the results of our simulations are consistent with earlier results using more traditional monolithic
approaches. This framework provides a platform to combine existing simulation codes or develop new

Keywords:

Computer applications

Physical sciences and engineering
Astronomy

Computing methodologies: simulation

modeling, and visualization
Distributed computing

physical solver codes within a rich “ecosystem” of interchangeable modules.

Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Large-scale, high-resolution computer simulations dominate
many areas of theoretical and computational science. The demand
for such simulations has expanded steadily over the past decade,
and is likely to continue to grow in coming years due to the increase
in the volume, precision, and dynamic range of experimental data,
as well as the widening spectral coverage of observations and
laboratory experiments. Simulations are often used to mine and
understand large observational and experimental datasets, and the
quality of these simulations must keep pace with the increasingly
high quality of experimental data.

In our own specialized discipline of computational astro-
physics, numerical simulations have increased dramatically in both
scope and scale over the past four decades. In the 1970s and
1980s, large-scale astrophysical simulations generally incorpo-
rated “mono-physics” solutions—in our case, the sub-disciplines of
stellar evolution [1], gas dynamics [2], and gravitational dynam-
ics [3]. A decade later, it became common to study phenomena
combining a few different physics solvers [4]. Today’s simulation
environments incorporate multiple physical domains, and their
nominal dynamic range often exceeds the standard numerical pre-
cision of available compilers and hardware [3].

* Corresponding author.
E-mail address: spz@strw.leidenuniv.nl (S.F. Portegies Zwart).

Recent developments in hardware—in particular the rapidly
increasing availability of multi-core architectures—have led to a
surge in computer performance [5]. With the volume and quality of
experimental data continuously improving, simulations expanding
in scope and scale, and raw computational speed growing more
rapidly than ever before, one might expect commensurate returns
in the scientific results returned. However, a major bottleneck
in modern computer modeling lies in the software, the growing
complexity of which is evident in the increase in the number of
code lines, the lengthening lists of input parameters, the number
of underlying (and often undocumented) assumptions, and the
expanding range of initial and boundary conditions.

Simulation environments have grown substantially in recent
years by incorporating more detailed interactions among con-
stituent systems, resulting in the need to incorporate very different
physical solvers into the simulations, but the fundamental design
of the underlying codes has remained largely unchanged since the
introduction of object-oriented programming [6] and patterns [7].
As a result, maintaining and extending existing large-scale, multi-
physics solvers has become a major undertaking. The legacy of
design choices made long ago can hamper further development
and expansion of a code, prevent scaling on large parallel com-
puters, and render maintenance almost impossible. Even config-
uring, compiling, and running such a code has become a complex
endeavor, not for the faint of heart. It has become increasingly
difficult to reproduce simulation results, and independent code

0010-4655/$ - see front matter Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.cpc.2012.09.024

http://dx.doi.org/10.1016/j.cpc.2012.09.024
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:spz@strw.leidenuniv.nl
http://dx.doi.org/10.1016/j.cpc.2012.09.024

S.F. Portegies Zwart et al. / Computer Physics Communications 184 (2013) 456-468 457

verification and validation are rarely performed, even though all
researchers agree that computer experiments require the same de-
gree of reproducibility as is customary in laboratory settings.

We suggest that the root cause of much of this code complex-
ity lies in the traditional approach to incorporating multi-physics
components into a simulation—namely, solving the equations ap-
propriate to all components in a single monolithic software suite,
often written by a single researcher or research group. Such a so-
lution may seem desirable from the standpoint of consistency and
performance, but the resulting software generally suffers from all
of the fundamental problems just described. In addition, integra-
tion of new components often requires sweeping redesign and
redevelopment of the code. Writing a general multi-physics ap-
plication from scratch is a major undertaking, and the stringent
requirements of high-quality, fault-tolerant scientific simulation
software render such code development by a single author almost
impossible.

But why reinvent or re-engineer a monolithic suite of coupled
mono-physics solvers when well-tested applications already exist
to perform many or all of the necessary individual tasks? In many
scientific communities there is a rich tradition of sharing scientific
software. Many of these programs have been written by experts
who have spent careers developing these codes and using them to
conduct a wide range of numerical experiments. These packages
are generally developed and maintained independently of one
another. We refer to them collectively as “community” software.
The term is intended to encompass both “legacy” codes that are
still maintained but are no longer under active development, and
new codes still under development to address physical problems
of current interest. Together, community codes represent an
invaluable, if incoherent, resource for computational science.

Coupling community codes raises new issues not found in
monolithic applications. Aside from the wide range of physical
processes, underlying equations, and numerical solvers they rep-
resent, these independent codes generally also employ a wide
variety of units, input and output methods, file formats, numerical
assumptions, and boundary conditions. Their originality and inde-
pendence are strengths, but the lack of uniformity can also signif-
icantly reduce the “shelf life” of the software. In addition, directly
coupling the very dissimilar algorithms and data representations
used in different community codes can be a difficult task—almost
as complex as rewriting the codes themselves. But whatever the
internal workings of the codes, they are designed to represent a
given domain of physics, and different codes may (and do in prac-
tice) implement alternate descriptions of the same physical pro-
cesses. This suggests that integrating community codes should be
possible using interfaces based on physical principles.

In this paper we present a comprehensive solution to many
of the problems mentioned above, in the form of a software
framework that combines remote function calls with physically
based interfaces, and implements an object oriented data model,
automatic conversion of units, and a state handling model for
the component solvers, including error recovery mechanisms.
Communication between the various solvers is realized via a
centralized message passing framework, under the overall control
of a high-level user interface. In Section 2, we name our framework
MUSE, the MUIti-physics Software Environment. An example of
the MUSE framework is presented in Section 3. In Section 4 we
describe a production implementation of AMUSE, the astrophysics
MUSE environment, which supports a wide range of programming
languages and physical environments.

1.1. An historical perspective on MUSE

The basic concepts of MUSE are rooted in the earliest develop-
ment of multi-scale software in computational astrophysics. The

idea of combining codes within a flexible framework began with
the NEMO project in 1986 at the Institute for Advanced Study (IAS)
in Princeton [8,9]. NEMO was (and still is) aimed primarily at colli-
sionless galactic dynamics. It used a uniform file structure to com-
municate data among its component programs.

The Starlab package [10,11], begun in 1993 (again at IAS),
adopted the NEMO toolbox approach, but used pipes instead of files
for communication among modules. The goal of the project was to
combine dynamics and stellar and binary evolution for studies of
collisional systems, such as star clusters. The stellar/binary evolu-
tion code SeBa [12] was combined with a high-performance gravi-
tational stellar dynamics simulator. Because of the heterogeneous
nature of the data, not all tools were aware of all data types (for ex-
ample, the stellar evolution tools generally had no inherent knowl-
edge of large-scale gravitational dynamics). As a result, the package
used an XML-like tagged data format to ensure that no information
was lost in the production pipeline—unknown particle data were
simply passed unchanged from input to output.

The intellectual parent of (A)MUSE is the MODEST initiative,
begun in 2002 at a workshop at the American Museum of Natural
History in New York. The goal of that workshop was to formalize
some of the ideas of modular software frameworks then circulating
in the community into a coherent system for simulating dense
stellar systems. Originally, MODEST stood for MOdeling DEnse
STellar systems (star clusters and galactic nuclei). The name was
later expanded, at the suggestion of Giampolo Piotto (Padova) to
Modeling and Observing DEnse STellar systems. The MODEST web
page can be found at http://www.manybody.org/modest. Since
then, MODEST has gone on to provide a lively and long-lived forum
for discussion of many topics in astrophysics. (A)MUSE is in many
ways the software component of the MODEST community. An early
example of MUSE-like code can be found in the proceedings of the
MODEST-1 meeting [13].

Subsequent MODEST meetings discussed many new ideas for
modular multiphysics applications [14, e.g.]. The basic MUSE archi-
tecture, as described in this paper, was conceived during the 2005
MODEST-6a workshop in Lund [15, Sweden]. The MUSE name,
and the first lines of MUSE code, were created during MODEST-
6e in Amsterdam in 2006, and expanded upon over the next
1-2 years. The “Noah’s Ark” milestone (meeting our initial goal of
having two independent modules for solving each particular type
of physics) was realized in 2007, during MODEST-7f in Amsterdam
and MODEST-7a in Split [16, Croatia]. The AMUSE project, short
for for Astrophysics MUIti-purpose Software Environment, a re-
engineered version of MUSE—“MUSE 2.0”, building on the lessons
learned during the previous 3 years—began at Leiden Observatory
in 2009.

2. The MUSE framework

Each of the problems discussed in Section 1 could in principle
be addressed by designing an entirely new suite of programs
from scratch. However, this idealized approach fails to capitalize
on the existing strengths of the field by ignoring the wealth of
highly capable scientific software that has been developed over the
last four or five decades. We will argue that it is more practical,
and considerably easier, to introduce a generalized interface that
connects existing solvers to a homogeneous and easily extensible
framework.

At first sight, the approach of assimilating existing software into
a larger framework would appear to be a difficult undertaking,
particularly since community software may be written in a wide
variety of languages, such as FORTRAN, C, and C++, and exhibits
an enormous diversity of internal units and data structures. On
the other hand, such a framework, if properly designed, could
be relatively easy to use, since learning one simulation package

http://www.manybody.org/modest

Download English Version:

hitps://daneshyari.com/en/article/10349854

Download Persian Version:

https://daneshyari.com/article/10349854

Daneshyari.com

https://daneshyari.com/en/article/10349854
https://daneshyari.com/article/10349854
https://daneshyari.com

