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We introduce an event-driven simulation scheme for overdamped dynamics of frictionless hard spheres
subjected to external forces, neglecting hydrodynamic interactions. Our event-driven approach is based
on an exact equation of motion which relates the driving force to the resulting velocities through the
geometric information characterizing the underlying network of contacts between the hard spheres. Our
method allows for a robust extraction of the instantaneous coordination of the particles as well as contact
force statistics and dynamics, under any chosen driving force, in addition to shear flow and compression.
It can also be used for generating high-precision jammed packings under shear, compression, or both. We
present a number of additional applications of our method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Systems of frictionless hard spheres serve as prototypical mod-
els in statistical physics, displaying a variety of emergent com-
plex phenomena [1-6]. Owing their popularity to their inherent
simplicity, systems of frictionless hard spheres are used to model
gases [7], supercooled liquids [6], dense suspensions [8-11] and
granular media [4,12]. The simplicity of hard-sphere systems stems
from the absence of energy scales in the hard-sphere interactions.
It is this simplicity which makes these systems a preferred choice
of model for the investigation of complex phenomena in particu-
late systems.

Perhaps the most extensively studied model of hard spheres
is the fully inertial fluid, in which collisions between particles
are entirely elastic. In these systems, collisions are instantaneous,
i.e., colliding particles spend no time at all in contact, but instead
conservation of energy and momentum determines the post-
collision velocities as a function of the pre-collision velocities.
Event-driven simulations of these systems are carried out by
predicting the next collision time from the instantaneous velocities
and positions of the particles [13]. Then, the system is evolved
forward in time directly to the next collision.

Here we shall rather focus on non-Brownian hard particles
immersed in a viscous fluid, in the overdamped limit where
inertia is negligible. We shall assume further that hydrodynamic
interactions are negligible. This assumption has been made in the
context of flow near jamming [5,8-11], where it appears to capture
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at least qualitatively the critical behavior in the dense limit [11].
Within the framework of these assumptions, contacts are formed
between the particles upon collisions, as they are pushed towards
each other. These contacts persist for finite intervals of time,
during which repulsive forces are exerted between the particles
in contact.

Our simulational approach is based on the exactly derivable
equations of motion of overdamped dynamics in the hard-sphere
limit, neglecting hydrodynamic interactions. These equations are
used to build an event-driven simulation. The equations of motion
are entirely based on geometric information, which allows us to
calculate the contact forces between the constituent hard particles,
and hence their distribution and evolution [14]. The main idea is
to evolve the system according to the equations of motion, while
carefully handling the formation of new contacts and the opening
of existing contacts between particles. Our method shares some
similarities with the method of contact dynamics [15] used in
dry granular materials, in which contact forces and velocities are
resolved iteratively under a set of complementarity relations.

The simulational scheme presented below has merits and
disadvantages with respect to existing methods. In terms of bare
complexity, the method we present is far inferior to conventional
molecular dynamics methods, in which the running time typically
scales linearly with the number of particles, given that interactions
are sufficiently short ranged. The running time of the scheme
presented here scales at least quadratically with the number of
particles. This is a consequence of the event-driven nature of
the scheme, together with the effectively long-range interactions
which can span the entire system at high packing fractions.
However, when compared to existing methods in which hard-
sphere dynamics is approached by reducing the loading rates in
systems of soft-potential interactions [8-10], our method has the
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advantage of directly sampling the hard-sphere limit. Furthermore,
our method requires essentially no adjustable parameters; particle
trajectories are invariant when length and time are measured in
the appropriate microscopic units.

The formalism presented here allows for useful extensions of
the methods built in this work. For instance, it is straightforward
to introduce hard boundaries (such as various container shapes,
hoppers, or inclined planes), or constructing composite particles
made of any number of beads, which can be floppy or constrained
as rigid bodies. The method can also be used to generate jammed
packings under various loading geometries, while maintaining
complete control over the identity of particles in contact, in
distinction from existing methods [ 16,17]. This control allows us to
properly account for rattlers in jammed states, with no ambiguity
whatsoever.

This paper is organized as follows. Section 2 derives the equa-
tions of motion for overdamped, frictionless hard spheres, either
driven by external forces, or under imposed spatial deformations,
neglecting hydrodynamic interactions. We also include an exten-
sion of our formalism for simple shear flow under fixed imposed
pressure. Section 3 illustrates the concept of the instantaneous
contact network, which is geometric information on which the
equation of motion is based. Section 4 contains an elaborate de-
scription of our simulational scheme and ends with a prescription
for generating jammed configurations under shear or compres-
sion. Section 5 describes applications of our simulation method and
presents some results from our simulations, illustrating the util-
ity of our event-driven approach. Section 6 presents concluding
remarks.

2. Equations of motion for overdamped, frictionless, driven
hard spheres

Consider a system of N frictionless hard spheres (referred to in
the following as particles) in a volume £2 with periodic bound-
ary conditions in d dimensions, such that there are no overlap-
ping particles, and some of the particles are exactly in contact:
the distance between their centers is equal to the sum of their
radii. When the system is unjammed, the number of contacts N,
in the system remains smaller than the number of spatial de-
grees of freedom Nd — d. Note that we subtract d translations
but not rotations due to the periodic boundary conditions. We de-
note the d-dimensional vector of the ith particle coordinates as
R,, its time derivative as V,, and define the directional differences
,/RU . R,j, and the
normalized directions 7 = I_éij/rjj. We will refer to the contact
network as the set of all pairs of particles that are in contact at
some instance in time, and the geometric information that accom-
panies the network, namely the directions 7, and the pairwise
distances rj.

We begin the derivation with accounting for the hgrd—sphere

interactions; given some vector of particles’ velocities Vj, the rate
of change induced on a pairwise distance r;; is

. 8r,] -
rj = Vi
IZ< 8Rk

= ) @G — 8w ity - Vi = (V; — V) - Ty, (1)
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R,-j = R — Ri, the pairwise distances rj =

The above relation consists of a linear transformation of vectors

from the space of the particles (of dimension Nd) to vectors in the

space of contacts (of dimension N, ). We define
8r,]

aRk

then Eq. (1) can be written in bra-ket notation as
) = $IV). (3)

Here and in the following we use bra-ket notations with upper-
case letters to denote vectors from the space of the particles (e.g.,
|V) for particle velocities), and bra-ket notations with lower-case
letters to denote vectors from the space of contacts (e.g., |r) for the
vector of pairwise distances).

As the particles are completely rigid, they cannot penetrate each
other. We thus impose a constraint on the particles’ velocities:
they must keep the distance between the pairs of particles that
are in contact unchanged, if the contact force exerted between the
pairs of particles is positive. We will see in Section 3 how a given
set of contacts between the particles does not change except at
discrete points in time. Except for at those discrete time points, the
velocities must satisfy

#) = 8|V) = 0. (4)

In the next two subsections we present the derivation of the
equations of motion for the case of dynamics under external
forces, and the case of spatial deformations of the system (e.g.,
compression or shear). Section 2.3 contains an extension of our
formalism to systems of hard particles under simple shear, with
fixed imposed pressure, as opposed to fixed volume.

2.1. Overdamped dynamics under external forces

In our framework, there are three forces acting upon each
particle: a drag force I?,? "8 the force exerted on a particle by its
neighbors with which it is in contact F°™, and some external
driving force I?,f’“. Assuming that the dynamics is overdamped,
and neglecting hydrodynamic interactions, the net force on each
particle must always be zero:

I‘fkext + ?I?rag + I_}Ifont —0. (5)

We assume conventional Stokes drag forces acting upon particles,
which are opposite in sign and proportional to their velocities:

F8 = g1V, (6)

where & has units of ;r;es & may generally depend on the

radius of the k'th particle; however, for the sake of brevity, we
consider here mono-disperse spheres, as the extension to poly-
disperse spheres is straightforward. Denoting the magnitude of the
(purely repulsive) force exerted between the jth and kth particles
as fik(=fiy), the forces exerted on a particle by its neighbors with
which it is in contact can be written as

Teont =
Fo = > Njicit

j in contact with k

= D)

all pairs i,j in contact

i) Migfij

T 7)

all pairs i,j in contact dRk

The above equation, similarly to Eq. (1), also consists of a linear
transformation, but this time from the space of contacts to the
space of particles, with the transpose of the same linear operator
& of Eq. (2); we thus write equation (7) as [12,18]

) = 87If), (8)

with |f) a vector of dimension N, denoting the contact forces fj.
Inserting Eqs. (6) and (7) in Eq. (5) and rearranging, we find

V) = &IF) + &8 If). (9)
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