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a b s t r a c t

We compare three different numerical methods for solving the Boltzmann–Poisson kinetic equation
describing electron transport in semiconductor superlattices. The associated initial-boundary value
problem is computationally intensive, and it requires the use of efficient and accurate numerical
methods and a large integration time to observe the Gunn-type self-oscillations of the current that
characteristically appear among its stable solutions. The first two numerical methods solve the kinetic
equation using finite differences and particles, respectively. The third method solves by finite differences
a less costly drift–diffusion partial differential equation that can be derived from the Boltzmann–Poisson
equation using the Chapman–Enskog perturbation method. We show the convergence of the methods
by means of numerical simulations with parameter values corresponding to superlattices used in
experiments. Comparing the results obtained with the three methods for a wide miniband superlattice
used in experiments (for which the small dimensionless parameter in the Chapman–Enskog expansion
is about 0.15), we show that the error of the Chapman–Enskog method is less than 0.8% despite a ten
times shorter computation time. Thus, for this superlattice, the Chapman–Enskog perturbation method
provides a very accurate solution with very low computational cost compared with directly solving the
kinetic equation by either finite differences or particles methods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor superlattices are periodic layered materials
formed by epitaxial growth of layers belonging to two different
semiconductors that have similar lattice constants [1]. They were
synthesized following Esaki and Tsu’s idea that these artificial
crystals would be useful to observe high-frequency oscillations
in the terahertz range such as Bloch oscillations [2]. In a doped
superlattice (SL), self-sustained Bloch oscillations have not been
found in experiments although they could exist under certain
restrictive circumstances [3]. Self-sustained current oscillations of
lower frequency (up to several gigahertz) have been observed in
experiments and explained by theory [1]. They are produced by
repeated formation of pulses of the electric field at the injecting
contact of a dc voltage biased SL and their motion toward the
collecting contact [1]. Thus they are transit-time oscillationswhose
frequency is inversely proportional to the SL length: they are
similar to the Gunn effect in bulk semiconductors [4]. These
Gunn-type oscillations have been observed in experiments with
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GaAs/AlAs SL (and with other SL based on III–V semiconductors)
since 1996 and are the basis of fast oscillator devices [5].

To understand the electron transport responsible for self-
sustained oscillations, mathematical models based on the Boltz-
mann transport equation have been proposed and used since the
1970s [6,1]. Aspects of electron transport can be understood by ig-
noring space charge effects and simplifying the model equations,
but the study of self-sustained oscillations requires considering
these effects. The earliest Boltzmann-type model was introduced
by Ktitorov, Simin and Sindalovskii (KSS) in 1971 [6]. They as-
sumed that only one miniband of the SL was populated by elec-
trons and modeled the collision terms in the Boltzmann equation
by one simple, energy-conserving, impurity collision term and by
a relaxation-time term involving the distribution function in ther-
mal equilibrium. Later Ignatov and Shashkin (IS) improved the
relaxation-time term by assuming that the distribution function
relaxes toward a local equilibrium containing the instantaneous
value of the electron density [7]. Electron–electron interactionwas
ignored by these authors [6,7]. Their analyses were based on sim-
plified reduced ordinary differential equations that can be easily
derived from the kinetic equation if the space dependence is ig-
nored [6–8].

To include space charge effects, it suffices to couple the ki-
netic equation for the distribution function to a Poisson equation
for the electric potential created by electrons. The resulting Boltz-
mann–Poisson model with simplified KSS and IS collision terms
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was first studied by Bonilla, Escobedo and Perales (BEP) [9]. Us-
ing a Chapman–Enskog method, these authors derived a nonlin-
ear drift–diffusion equation (DDE) for the electric field inside the
SL in a high-electric field hydrodynamic limit. Then they added
appropriate boundary and initial conditions and solved the result-
ing drift–diffusion problem numerically. Stable self-sustained os-
cillations are among the solutions found numerically [9]. A direct
numerical solution of the kinetic Boltzmann–Poisson system con-
sidered by BEP also shows stable self-sustained oscillations for
appropriate values of the voltage bias [10]. However, no one has
compared, in terms of accuracy and computational cost, the nu-
merical solution of the DDE with the one obtained by solving
directly the kinetic equation. We tackle these problems in the
present paper and their solution is a step toward more precise
studies of stable current oscillations in superlattices and other low
dimensional solid state systems.

We solve the BEP Boltzmann–Poisson kinetic equation model
in two ways: by a previously used deterministic particle method
[10–12], and also by an efficient and accurate implicit finite
differences method. Particle methods are appropriate to study our
system of equations because their solutions may present large
gradients: the electric field pulses obtained by simulating the
approximate DDE have a smooth leading front but a steep trailing
back front [1]. The present work validates the Chapman–Enskog
perturbation method used to derive the DDE for the present
semiclassical Boltzmann–Poisson problem. The Chapman–Enskog
method has also been used to analyze other interesting problems
in nanoelectronics and spintronics described by related quantum
kinetic equations for which no direct numerical solution is
known [3,13,14].

The rest of the paper is as follows. In Section 2 we describe
the model equations and derive the DDE by means of the
Chapman–Enskog method. Sections 3–5 explain the numerical
methods used: finite differences, particles and the scheme for the
DDE, respectively. The analysis of the convergence of the numerical
methods presented in Section 6 is based on numerical simulations.
Finally, Section 7 contains our conclusions.

2. Model equations

The BEP Boltzmann–Poisson system for 1D electron transport
in the lowest miniband of a strongly coupled SL is [9]:
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with x ∈ [0, L] and f periodic in k with period 2π/l. Here f , f FD, n,
ND, E , l, −F , ε, m∗, kB, T , νen, νimp and −e < 0 are the one-
particle distribution function, the 1D local equilibrium distribution
function, the 2D electron density, the 2D doping density, the
miniband dispersion relation, the SL period, the electric field, the
SL permittivity, the effective mass of the electron, the Boltzmann
constant, the lattice temperature, the constant frequency of the
inelastic collisions responsible for energy relaxation, the constant
frequency of the elastic impurity collisions and the electron
charge, respectively. Both the exact and the local equilibrium

Fermi–Dirac distribution functions have the same electron density
according to (3). The chemical potential µ is a function of the
electron density n that can be obtained by inserting (4) into
(3) and solving for µ = µ(n). The first term in the right
hand side of Eq. (1) represents energy relaxation toward a 1D
effective Fermi–Dirac distribution f FD(k; µ) (local equilibrium)
due to, e.g. phonon scattering. A similar collision model with a
Boltzmann local distribution functionwas proposed by Ignatov and
Shashkin [7]. The second term in the right hand side of Eq. (1)
accounts for impurity elastic collisions, which conserve energy
but dissipate momentum [6,9,1]. Transfer of lateral momentum
due to impurity scattering is ignored in this model; the effects of
lateralmomentum transfer have been analyzed by Gerhardts using
a simple collision model [15].

There are more realistic semiclassical and quantum treatments
of collisions [16]. However the resulting kinetic equations are
much more difficult to handle and have not been solved with
boundary and initial conditions corresponding to current self-
oscillations. These equations have not been amenable to singular
perturbation reductions precisely because their collision terms
are so unwieldy. In marked contrast to this situation, the simple
collision model used in (1) allows to find approximate solutions in
different important limits. Self-sustained oscillations of the current
appear in the limit of strong electric fields such that the term
proportional to the electric field and the collision terms have the
same order and dominate all others. Keeping only the electric
field and the collision terms in (1) produces an equation that can
be solved to yield a modified local equilibrium distribution. That
distribution is the basis of any perturbation analysis. Replace the
KSS–IS collision by a more realistic model either semiclassical
[15,17] or quantum mechanical [16], and no analytical expression
for the modified local equilibrium distribution has been found. In
the case of small electric fields in which collisions dominate all
other terms in the kinetic equation, perturbative schemes produce
useful reduced equations even for more realistic collision models.
For instance, if the elastic collisions dominate over inelastic ones
and over all other terms in a one-band 3D semiconductor kinetic
equation, the Hilbert expansion produces in the parabolic limit a
reduced kinetic equation usually called the Spherical Harmonic
Expansion (SHE) model [17]. A Chapman–Enskog expansion
further reduces the SHE model to an energy-transport system
of equations [17]. It would be interesting to see whether SHE
ideas yield reduced model equations in the limit of strong electric
fields producing comparable field-dependent and elastic collision
terms in the kinetic equation. For superlattices, the KSS–IS collision
model can be fitted so that the frequencies νen and νimp yield
current–voltage curves similar to those found in experiments
or calculated by Monte Carlo simulations in idealized situations
(infinite superlattices, constant electric fields, space-independent
conditions) [16]. Thus calibrated, the KSS–IS collision model
provides a good description of electron transport in superlattices
at a given temperature.

We assume the simple tight-binding miniband dispersion
relation:

E(k) =
∆

2
(1 − cos(kl)) , (5)

where ∆ is the first miniband width. The group velocity is then
given by:

v(k) =
1
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∂E

∂k
=

∆ l
2h̄
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The tight-binding expression (5) keeps only the first harmonic in
a Fourier cosine expansion of the dispersion relation. We show
elsewhere that keeping more terms does not change substantially
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