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a  b  s  t  r  a  c  t

Shape-based  3D  surface  reconstructing  methods  for  liver  vessels  have  difficulties  to  tackle  with  limited
contrast  of  medical  images  and  the intrinsic  complexity  of  multi-furcation  parts.  In  this  paper,  we pro-
pose  an  effective  and  robust  technique,  called  Gap  Border  Pairing  (GBPa),  to  reconstruct  surface  of  liver
vessels  with  complicated  multi-furcations.  The  proposed  method  starts  from  a tree-like  skeleton  which
is  extracted  from  segmented  liver  vessel  volumes  and  preprocessed  as  a number  of  simplified  smooth
branching  lines.  Secondly,  for each  center  point  of any  branching  line,  an  optimized  elliptic  cross-section
ring  (contour)  is  generated  by optimizedly  fitting  its actual  cross-section  outline  based  on  its  tangent
vector.  Thirdly,  a tubular  surface  mesh  is  generated  for  each  branching  line  by  weaving  all  of its adja-
cent  rings.  Then  for  every  multi-furcation  part,  a transitional  regular  mesh  is effectively  and  regularly
reconstructed  by using  GBP.  An initial  model  is  generated  after  reconstructing  all  multi-furcation  parts.
Finally,  the model  is refined  by using  just  one  time  subdivision  and  its topologies  can  be  re-maintained
by  grouping  its  facets  according  to  the  skeleton,  providing  high-level  editability.  Our  method  can  be
automatically  implemented  in parallel  if the segmented  vessel  volume  and  corresponding  skeletons  are
provided.  The  experimental  results  show  that  GBP  model  is  accurate  enough  in  terms  of  the  boundary
deviations  between  segmented  volume  and  the  model.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introductions

3D surface models of blood vessels in human organs like cerebra,
livers, hearts and wombs play a significant role in medical applica-
tions [1,2]. These models provide therapy planning, virtual surgery,
radiotherapy and anatomy teaching with great conveniences. In
clinical applications for example, intuitive geometric represen-
tations such as vessel topologies, spatial locations of branching
segments, sizes of tubes, as well as relationships between ves-
sels and other tissues can be directly visualized in these models.

Abbreviations: GBP, Gap Border Pairing; MP,  main plane; EC, exclusive circle;
BC, border circle; TP, turning point; BS, border segment; TT, turning triangle; Pk,
key multi-furcation point; Da, absolute boundary deviation; Dr, relative boundary
deviation.
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Thus a good understanding of blood vessels can be provided for
surgeons before surgery procedures, minimizing subjective factors
which could cause erroneous assessments. As to medical teaching,
novices can easily learn to master vascular anatomy by interac-
tively manipulating these models [3], greatly shortening the time
used for virtual surgery training.

The vessel volume segmented from medical images can be ren-
dered either by volume [4] or surface [5,6], where the volume here
is inferior to surface regarding the velocity and storage [7]. There-
fore, surface model should still be reconstructed in the main trend
of vessel visualization. As to the surface modeling, there are two
main categories of methods [8]. The first category refers to shape-
free techniques, which construct mesh directly from boundary
voxels of vessel volume, but not make any assumption of structural-
ized geometry. These techniques are applied primarily for diagnosis
which requires high accuracy. Marching Cubes [9] and Multi-level
Partition of Unity [10] are two popular techniques on which many
other shape-free methods are based. Similarly, Ding [11] intro-
duces a region-based technique to reconstruct human airways and
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artery vessels, dividing surface mesh into tree hierarchies. But it
embodies no reasonable divisions around furcating parts and no
other geometric representations such as cross-section radii and
tube curvatures. On contrary, the shape-based techniques, belong-
ing to second category, are used to construct referential models for
therapy planning and medicine teaching [12,13]. These techniques
make assumptions that the blood vessels have strictly tree-like
structures with tubular shapes. They require regular (circular or
elliptic) cross-section contours and smooth organic looking shapes
on non-pathological branches.

The shape-free techniques have intrinsic disadvantages. The
conspicuous one is their lack of structural geometric parameters.
Due to the incomplete contrasts of medical images and limited
extracting methods, aliasing voxels will occur at volume bound-
aries, causing these techniques to generate coarse meshes. In
contrast, the shape-based techniques have unparalleled advan-
tages because they can provide high-level information such as
tube trends, degrees of curvatures, cross-section radii and topo-
logical hierarchies. Though shape-based techniques have more
complexities in algorithm designs, they are more advantageous
than the shape-free in terms of providing anatomical informa-
tion.

In usual, many methods based on shape-based techniques con-
struct coarse meshes first by means of quads [14–16], spline curves
[17] or solid NURBS mesh [18], then the coarse meshes are refined
by using surface subdivision for several times. However, most exist-
ing shape-based methods have difficulties in well weaving smooth
meshes around complicated multi-furcation parts, especially for
liver vessels. Second, the computational overheads and storages
would fall into exponential growth along with subdivision times.
Third, over subdivisions would cause excessive deformations on
refined models compared with segmented volumes. Forth, due to
intrinsically coarse boundary voxels of segmented volume, the ini-
tial radii attached to skeleton centerlines (used by shape-based
methods) generated by traditional skeletonizing methods cannot
be treated as reasonable. These radii are always much smaller than
their actual values, especially at narrow tubes. Finally, the center-
lines are not necessarily centered at optimized center positions. All
these disadvantages imply that the vessel surface meshes should
be based on optimized cross-section rings (see in Section 3.1) of
branching vessel tubes.

In order to solve the lacks of high-level geometric informa-
tion and the disadvantages mentioned above, we introduce a novel
shape-based modeling method—GBP (see Sections 4 and 5). The
model by GBP is based on optimized skeletons and requires refine-
ment with just one time subdivision. We  make an assumption
that the cross-section contours of vessel branches are intrinsically
elliptic or circular. Firstly, the tree-like skeleton (centerlines) is
extracted from the segmented vessel volume. The skeleton is com-
posed of a number of hierarchically connecting segments which are
smoothed, simplified and recombined into a number of branching
lines. Second, we construct elliptic contours for every branch-
ing line by generating optimized cross-section rings for all center
points of the line. Third, all adjacent rings are weaved with triangu-
lar facets to generate tubular meshes. Forth, as our key innovation,
GBP is applied to construct close regular meshes for all multi-
furcation parts with any numbers of branches. Finally, the initial
model is refined by using one time subdivision and correspond-
ing tree topologies are re-maintained by checking the connections
between new facets and old vertices.

This article is organized as follow from Sections 2–9. Sec-
tion 2 describes how to construct an adaptive tree-like skeleton
from original vessel volume segmented from CT images. More
detailed materials will be introduced in the experimental section
(Section 7). Section 3 introduces the construction of optimized
elliptic tubular surfaces for branching lines. Section 4 introduces

the fundamental of GBP algorithm in 2D diagrams. Section 5 illus-
trates how to use GBP to reconstruct real 3D multi-furcation parts.
Section 6 describes the refinement for initial GBP model and re-
topologization for the model. Section 7 describes the experiments
and validations. Section 8 is discussion about GBP modeling. Sec-
tion 9 summaries the whole thesis and prospects our future work.
The flowchart of our work is shown as Fig. 1.

2. Constructing an adaptive tree-like vessel skeleton

2.1. Segmenting the vessel volume

Since our method is shape-based, the skeletal representation
for vessels is required. The scalar field of vessel volume is first
segmented by using the adaptive multi-scale segmenting method
introduced in our previous work [19]. There are three reasons for
using this method: the incomplete contrasts between vessel pat-
terns and backgrounds, the limited existing segmenting algorithms
which cannot extract vessel volumes completely, and algorithm
automaticity.

Note that the histograms of vessel backgrounds in CT images
have been proved to comply with Gaussian distribution [19]. The
distribution function is obtained from vessel signals segmented
from backgrounds by using local optimized thresholds. Then Hes-
sian matrix is employed to enhance the thin blood vessels before
segmenting. By combining the major vessels and thin vessels via
filtering, the liver vessels can be approximately completely seg-
mented.

2.2. Extracting and preprocessing the skeleton

The tree-like vessel skeleton is extracted from scalar field of the
vessel volume aforementioned. Suppose that we  have an initial
skeleton which is composed of a number of centerline segments
connecting to each other at furcating points. A segment is single-
voxel-width and represented as a sequence of continuous center
points between two endpoints (furcating points or leaf points).
Every center point is attached with an initial radius (local maxi-
mum boundary distance) indicating the size of the cross section at
that point. One segment is set as root ranking level 0. Others are
descendant segments having the ranking levels respectively equal
to their depths from root segment.

However, the initial centerline segments are in general alias-
ing, which would cause difficulties in reconstructing cross-section
rings and result in overlaps between adjacent rings. In addition,
not all center points are necessary for representing the skeleton.
Therefore, three steps are employed to optimize the skeleton:

(1) Fine smoothing segments: Interpolation methods like Her-
mite require values and derivatives at endpoints and are sensitive
to tangents of endpoints. Gaussian smoothing must be carefully
applied to different coarse centerline segments otherwise it will
cause excessive deviations. By comparison, Catmull-Rom Spline is
advantageously an alternative to fit centerlines under the premise
in accuracy and preventing deformability. The spline is represented
as Eq. (1).

B(u) = uT Mo  (1)

where u is the parameter vector, M is the coefficient matrix and o is
the geometric information of control points. We  iteratively select
four sequential center points as control points, and there are two
continuous center points unused between each two  adjacent con-
trol points. After fitting a curve between the two  middle control
points, we select two equal-interval points (u = (0.33, 0.66)) on the
curve to replace two corresponding unused points. Fig. 2(a) shows
a centerline segment with sequential adjacent points, where P0, P1,
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