
GPU-accelerated 3D mipmap for real-time visualization of ultrasound
volume data

Koojoo Kwon, Eun-Seok Lee, Byeong-Seok Shin n

Department of Computer and Information Engineering, Inha University, Incheon, Republic of Korea

a r t i c l e i n f o

Article history:
Received 22 February 2013
Accepted 13 July 2013

Keywords:
Ultrasound data
Volume rendering
3D noise filtering
Mipmap

a b s t r a c t

Ultrasound volume rendering is an efficient method for visualizing the shape of fetuses in obstetrics and
gynecology. However, in order to obtain high-quality ultrasound volume rendering, noise removal and
coordinates conversion are essential prerequisites. Ultrasound data needs to undergo a noise filtering
process; otherwise, artifacts and speckle noise cause quality degradation in the final images. Several two-
dimensional (2D) noise filtering methods have been used to reduce this noise. However, these 2D
filtering methods ignore relevant information in-between adjacent 2D-scanned images. Although three-
dimensional (3D) noise filtering methods are used, they require more processing time than 2D-based
methods. In addition, the sampling position in the ultrasonic volume rendering process has to be
transformed between conical ultrasound coordinates and Cartesian coordinates. We propose a 3D-
mipmap-based noise reduction method that uses graphics hardware, as a typical 3D mipmap requires
less time to be generated and less storage capacity. In our method, we compare the density values of the
corresponding points on consecutive mipmap levels and find the noise area using the difference in the
density values. We also provide a noise detector for adaptively selecting the mipmap level using the
difference of two mipmap levels. Our method can visualize 3D ultrasound data in real time with 3D noise
filtering.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Visualization of ultrasound data is a technique used to image
ultrasonic echo signals. An ultrasound device has several advan-
tages compared with other medical imaging modalities such as CT
and MRI. The patient can be diagnosed comfortably with ultra-
sound imaging since it is a non-invasive method. In addition, the
procedure used to acquire the data is faster than that of other
imaging techniques, and it offers interactive visualization of the
underlying anatomy with the capacity to represent dynamic
structures such as cardiac motion. Three-dimensional (3D) visua-
lization of ultrasound data is a helpful method in the field of
clinical imaging. While early applications were focused on cardiac,
obstetric, and gynaecological applications, its capabilities continue
to expand throughout the field of clinical imaging.

Two significant problems have to be surmounted in order to
achieve efficient 3D ultrasound data visualization: noise reduction
and coordinate conversion between conical ultrasound coordi-
nates and Cartesian coordinates. First, noise filtering is used to
reduce or eliminate noise since ultrasound data typically contains
speckle noise and fuzzy boundaries. Pre- and post-processing of

the ultrasound images can improve the quality of the final image.
Several methods apply noise removal filters to the entire volume
dataset in the pre-processing step using two-dimensional (2D)
filter kernels [1,2]. However, 2D filtering methods ignore relevant
information provided by adjacent 2D-scanned images. Second, CT
and MR data are reconstructed in terms of a regular 3D voxel
dataset by stacking parallel cross-sections. However, nonparallel
slices are not suitable for this representation since ultrasound
volume data are acquired using ultrasound probes. They require
conversion between ultrasound coordinates and Cartesian coordi-
nates during visualization in real time. Most conventional meth-
ods perform coordinates conversion between two spaces in the
pre-processing stage, as it is a time-consuming task. 3D ultrasound
imaging is often used in obstetric ultrasonography. It can provide
real-time diagnosis of the anatomical region of interest and can be
used to efficiently visualize object characteristics and diagnostic
quality [3]. Due to the phase sensitive detection of ultrasound
devices, ultrasound images are characterized by patterns of white
and dark spots. These patterns are known as speckles and are
forms of multiplicative noise [4]. Speckles are often deemed
undesirable; therefore, several noise removal filters have been
proposed to eliminate them. In particular, several adaptive filters
have been presented for speckle reduction by Lee et al., Frost et al.,
and Kuan et al. [5–7]. These filters have a moving kernel on the
image area. The balance and size of the window kernel is an

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cbm

Computers in Biology and Medicine

0010-4825/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compbiomed.2013.07.014

n Corresponding author. Tel.: +82 32 860 7452.
E-mail address: bsshin@inha.ac.kr (B.-S. Shin).

Computers in Biology and Medicine 43 (2013) 1382–1389

www.sciencedirect.com/science/journal/00104825
www.elsevier.com/locate/cbm
http://dx.doi.org/10.1016/j.compbiomed.2013.07.014
http://dx.doi.org/10.1016/j.compbiomed.2013.07.014
http://dx.doi.org/10.1016/j.compbiomed.2013.07.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.07.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.07.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compbiomed.2013.07.014&domain=pdf
mailto:bsshin@inha.ac.kr
http://dx.doi.org/10.1016/j.compbiomed.2013.07.014


important factor, and it requires more processing time since it uses
a large kernel. Kim et al. [8] proposed a noise filtering method for
2D ultrasound images that uses a median filter; however, it is
required in the pre-processing stage. Burckhardt [9] presented a
theoretical analysis of noise as an interference phenomenon. A
number of researchers have used Gaussian-weighted averaging to
smooth images and the Laplacian-of-Gaussian (LoG) to detect
tissue boundaries [10]. Evans and Nixon [11] proposed the use of
a variation of the median filter to estimate the local mode within
ultrasound images. However, it is difficult to determine the mode
within a small population such as a 9�9 filter kernel. As a result,
they use a truncated median filter to estimate the mode of the
local distribution. Although these filtering methods are good for
image improvement, they are not suitable for volumetric ultra-
sound data as they ignore possibly relevant information provided
by adjacent 2D-scanned images while using these 2D filters. Sun
et al. [12] proposed an anisotropic diffusion method for reducing
speckle on 3D ultrasound images. Their proposed method extends
the 2D speckle reduction method to 3D data, but it takes several
minutes for computing time. Morihisa et al. [13] provided an
expansion from 2D to 3D filtering methods to improve image
quality for cone-beam computed tomography. The effect of their
noise reduction filter is to provide improvements in morphological
structure depiction. It can be used to eliminate the effects of
speckles and impulsive noise; however, its processing time is not
suitable for real-time visualization. The visualization of 3D ultra-
sound has to be processed as fast as the associated data are
acquired. Several approaches for visualizing volumetric data have
been proposed [14]. Volume ray casting, in particular, provides
superior image quality but comes at a high computational cost.
The first implementations to use programmable graphics hard-
ware were those by Krüger [15] and Röttger et al. [16] in 2003.
They introduced volume visualization using a consumer PC in
combination with acceleration techniques such as early ray termi-
nation and empty-space skipping. To enhance rendering perfor-
mance while maintaining or even improving the image quality,
Scharsach [17] presented a cached blocking GPU-based ray casting
scheme. As the performance of GPUs improves, volume rendering
for object transformation is now being performed in the rendering
stage rather than the pre-processing stage [18–20]. To avoid
dealing with complex meshes in proxy-based space warping,
transformation can be defined as a point-wise warping of the
volume. It is an inverse map method in which a viewing ray is
warped from the original sampling position to a transformed one
during ray traversal. Spatial transfer function [21] and displace-
ment mapping [20] are used for object transformation. However,
they need more computation time for transformation because the
transformation function is complicated and most of the operations
are executed in the fragment shader.

To visualize ultrasound data in real time with less noise, we
propose a 3D-mipmap-based approach that performs noise filter-
ing on GPUs. First, we generate point primitives from voxels of
input volume data. Next, we select non-transparent point sets by
applying an opacity transfer function and generate a 3D mipmap
on the vertex shader and the geometry shader using these point
sets. The density values of corresponding points on two mipmap
levels are then compared, and the noise region is found using the
difference in the density values. The difference signifies the
disproportion of uniformity in the same area. The 3D mipmap
has to be constructed within a short period of time before the
fragment processing performs noise reduction. While conven-
tional noise filtering methods rely solely on the fragment shader,
our method reduces the burden placed on the fragment shader by
increasing the use of the vertex shader for 3D mipmap generation.
This improves the overall rendering speed since it balances the
load of vertex and fragment processing. The main contribution of

our work is that we make fast 3D filtering method using mipmap
structure on GPU shader for ultrasound data. Using the proposed
method, it is possible to obtain a real-time 3D filtering result
better than the quality of applying 2D filter.

2. Method

We propose a noise reduction method for 3D ultrasound data
that uses 3D mipmaps on the vertex shader, the geometry shader,
and the fragment shader and reduces noise without destroying the
fine details of the object. Our method comprises a two-pass
approach using shaders. The first pass comprises vertex processing
in which we generate a points set from the volume data. In this
pass, several levels of the 3D mipmap are generated from the point
primitive set on the vertex shader and the geometry shader. The
second pass is implemented on the fragment shader. We provide a
noise detector that adaptively selects the mipmap level using the
difference in the sample values of two mipmap levels.

2.1. 3D mipmap generation

A mipmap is a pre-calculated, optimized collection of images
accompanying an original texture and is intended to increase
rendering speed and reduce aliasing. Most graphics hardware
supports mipmaps because they can be implemented easily and
do not require a lot of storage. However, the supported mipmaps
are only 2D-based mipmap structures. We need to provide
mipmaps for 3D textures on the vertex shader since recent GPU
architectures can easily remove and create vertices at runtime.
This can be performed repetitively at each shader phase in the
graphics pipeline.

Fig. 1 depicts the 3D mipmap generation process. First, vertex
buffer VBi ð0≤ i≤nÞ and stream output buffer SOi are generated in
accordance with the mipmap levels. The number of mipmap levels
generated by the user is represented as n. We store three voxels for
one vertex, as this helps to reduce the amount of memory required
and is suitable for representing voxel coordinates XYZ. An average
of eight contiguous voxels for the current level are stored in the
vertex buffer for the next level while a 3D mipmap is being
generated. The i-th voxel position of mipmap level n�1, corre-
sponding to the i-th voxel on mipmap level i, is addressed using
Eq. (1) since the texture coordinates of each mipmap level is
normalized from zero to one. The output of each step of SO
corresponds to each level of the 3D mipmap. This mipmap
generation process is completed after these processes have been
repeated n times. The results are then loaded into video memory,
and the final image is rendered in the fragment shader using the
3D mipmap texture

xn�1 ¼ x=xSizen�1

yn�1 ¼ y=ySizen�1

zn�1 ¼ z=zSizen�1 ð1Þ
where, x, y, and z are the specific position of the 3D mipmap and
xSize, ySize, and zSize are the sizes on the n-th level of the current
3D mipmap. In our method, there are two ways to generate the SO:
either a thread is assigned to a single vertex (Fig. 2(a)) or the
thread has three channels for one vertex (Fig. 2(b)). We reduce the
number of threads using the method depicted in Fig. 2(b), which
we call compressed SO, instead of the method shown in Fig. 2(a).
When the method depicted in Fig. 2(a) is used, all the vertices are
processed at each thread in parallel. However, indices u, v, and w
have to be calculated on the volume texture in each thread since u,
v, and w signify the position of the 3D texture. In addition, it is not
suitable for volume data since most hardware have limitations on
the maximum number of threads. On the other hand, we can

K. Kwon et al. / Computers in Biology and Medicine 43 (2013) 1382–1389 1383



Download English Version:

https://daneshyari.com/en/article/10351469

Download Persian Version:

https://daneshyari.com/article/10351469

Daneshyari.com

https://daneshyari.com/en/article/10351469
https://daneshyari.com/article/10351469
https://daneshyari.com

