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a b s t r a c t

Patterns have been widely used in Computer Science. A pattern describes a generic solution to an existing
problem in a more readable and accessible form. A pattern-oriented process specification consists of a
generic and abstract description of a process. This paper presents a pattern-oriented specification of a
genetic regulatory network inference process performed from microarray data and prior biological
knowledge. The proposed specification was conceived based on prior work on gene inference networks.
The adequacy of the proposed solution was then evaluated with respect to modern tendencies of the
genes network inference literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bioinformatics concerns the use of advanced computation tech-
niques and biological knowledge, including internet distributed
databases and processors, parallel processing and data mining, to
promote knowledge advances in (molecular) biology. One of the
greatest challenges of the field consists in the development of
mathematical models and corresponding inference techniques for
mining databases and extracting new knowledge. These models and
processes are continuously created, improved and modified by
experts in the area. The applied research community profits from
these advances with the use of the corresponding software when it
becomes available in specialized repositories.

Genes and their protein products, generated by gene expression
through transcription and translation, form complex signaling
networks, which control metabolic pathways, cellular functions
and the future expression of genes themselves. A network of this
kind is known as a gene regulatory network or genetic regulatory
network (GRN). In a GRN, the level of expression of a gene depends
on the expression values of a gene subset and on external stimuli,
both at previous instants of time. This property characterizes GRNs
as dynamical systems [1]. Understanding the structure and
dynamics of gene regulatory networks is one of the biggest
challenges that Biology faces today. For example, the ability of
intervening in a GRN in order to make it reach given states and
avoid others (such as those associated with disease) would have

strong impact in human therapy [2,3] as well as in animal
breeding [4,5] and farming [6–8].

Many approaches have been proposed for the inference of genes
network from gene expression data, for example [9–16]. Reviews of
such methods can be found in [1,17–20]. In general, these approaches
consist in the execution of a sequence of procedures (i.e., databases
creation and consulting, signal processing, system inference, etc.)
until a new biological hypothesis can be inferred from available data
and previous knowledge. Since these tools are usually not integrated,
researchers of the field are frequently compelled to re-implement
pieces of software in order to create a coherent analysis pipeline [21].

The composition of individual system parts to create an integrated
software solution can be accomplished using general purpose
integration environments, such as Taverna [22,23], Bio-jETI [24,25]
and Magallanes [26]. These environments provide great flexibility for
the integration of any given set of individual programs. Since these
environments are not targeted to a specific domain they neither
provide guidelines nor define data structures and interfaces to
facilitate the development of individual contributions in any given
domain. We believe that this lack of facilities for the development of
individual contributions in a particular domain hinders the effective
use of these environments as platforms for collaborative scientific
research.

We believe that general purpose integration environments
would benefit greatly from the availability of abstract process
models for specific domains described using a sequence of abstract
activities, each one characterized by its input–output data and
expected behavior. Based on the abstract specification, different
computational methods could then be developed by researchers as
possible realizations of these abstract activities. These contribu-
tions would easily be integrated with the contributions of other
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researchers to create comprehensive analysis solutions. A similar,
albeit simpler, approach was adopted by Khoros [27,28], which
was a well-known software environment widely used by the
image processing research community.

This paper concretely applies this idea by presenting the
specification of an abstract genes network inference process that
can be used as basis for collaborative research on gene regulatory
network inference. We call this abstract process specification a
pattern, since it describes a reusable solution to a problem in a
given context. Our specification was designed based on three
previous works on gene regulatory network inference processes
[29–32]. The quality of the proposed pattern specification was
checked by studying its adequacy to describe representative
techniques of different modern tendencies of the genes network
inference literature [19,33–35].

Following this introduction, Section 2 recalls the main activities
involved in gene regulatory network inference. Section 3 presents
a review of concepts and properties of a pattern-oriented process
specification and provides an overview of a standard modeling
language used in our specification. Section 4 presents an overview
of the proposed gene regulatory network inference pattern speci-
fication and describes in detail its main activity, Network Construc-
tion. Section 5 discusses the genesis and robustness the proposed
specification. Finally, Section 6 presents some conclusions and
outlines future works of this research. Appendix A provides a
detailed description of the activities specified in the proposed
gene regulatory network inference pattern specification.

2. Gene regulatory network inference

A time-course microarray experiment aims at quantitatively
measuring levels of gene expression for a large set of genes (usually
thousands) at successive time-intervals and at experimental condi-
tions at which the biological phenomenon under study can be
observed. The output of a time-course microarray experiment is
the main input to the gene regulatory network identification process.
It consists of a n�m matrix measuring the expression levels of the n
genes at m consecutive time instants, usually spaced at regular
intervals. Each of the n rows in the matrix represents the expression
value of a single gene at the m time instants, and each of the m
columns represents the expression values of the whole gene set at a
given time, i.e., the values in each column usually come from a
different microarray experiment performed at a given time1 (see
Fig. 1a).

These time-course microarray data, after adequate pre-processing
(i.e., normalization and quantization), are used for estimating the
probabilistic dependence of a target gene to a set of predictor genes
(see Fig. 1a–c). In general, these inference methods are based on the
estimation of mutual information [36] or similar concepts such as
CoD (Coefficient of Determination) [37], which essentially measures
the degree of mass concentration of the conditional distributions due
to the observation of a given set of genes. The best predictor sets are
exactly the ones that produce a stronger regulation, i.e., the ones that
concentrate more substantially the probability mass of the condi-
tional distributions. When evaluating these dependencies from time-
course microarray data, predictor genes are observed in samples
taken before the target gene sample in order to infer dynamic
dependencies and temporal evolution regulation. Nevertheless, in
many cases, like in higher eukaryotes, where temporal gene expres-
sion data are difficult to obtain, samples taken from different
individuals are supposed to capture steady states of the underlying
dynamics, and predictor–target dependencies are evaluated inside

the same sample [13,30,33,38]. These target–predictor dependencies,
identified in the data, are the building blocks for inferring the GRN
architecture and dynamics.

Fig. 1 provides an overview of how GRN inference from
microarray data is carried out. The main sources of information
are periodic samples of gene expression obtained by time-course
microarray experiments (Fig. 1a). Based on this information we try
to determine dependencies of the type: which (predictor) genes
regulate – directly or indirectly according to the data – a (target)
gene – for simplicity, in Fig. 1b we assume cardinality two for the
predictor set. In order to infer these gene dependencies (also
called network wiring connections), we estimate from the micro-
array data the probabilities of occurrence of each possible target
value given each possible state of the predictor set (Fig. 1c). We use
those probability distributions to estimate some dependence or
predictability measure (like CoD, entropy or mutual information)
to evaluate the strength of connection SCðg1; g2-g3Þ from a
predictor gene set g1; g2 to a target gene g3 (Fig. 1b).

The network construction method starts with a seed subset of
genes, which are known to be involved in the phenomenon under
study, as the initial gene layer (initial network), and adds to the
growing network, at each successive step, a new gene layer formed
by the genes most significantly connected to the genes in the
previous layer.2 At each network growing step, we compute the
strength of connection “from” the previous layer G to each candidate3

gene h, SCðG-hÞ, and the strength of connection from each
candidate gene h “to” the previous layer G, SCðh-GÞ (Fig. 1d).
Candidate genes are ranked by their overall strengths of connection
with the previous layer G, SCðh2GÞ ¼maxfSCðh-GÞ; SCðG-hÞg
(upper Fig. 1e indicates this ranking). Candidate genes ranked over
the predictability threshold Tpl are automatically included in the next
layer, while candidate genes between thresholds Tpl and Tpmin

are
included in the next layer only if they belong to the auxiliary subset
of genes SF known (or plausibly supposed) to be related to the
phenomenon under study (lower Fig. 1e indicates gene selection for
the next layer). The most recently added gene layer will be
considered the previous layer G in the next growing step. This
process is iterated a number of times until some stop condition is
reached (in Fig. 1f each color indicates a different gene layer).

3. Pattern-oriented process specification

3.1. Pattern specification

A pattern describes a generic solution to an existing problem in a
more readable and accessible form [42]. Patterns capture proven
solutions to real problems and generalize these solutions so that they
can be reused in similar contexts. Historically, patterns emerged as a
discipline in Computer Science somehow influenced by the pioneer
work of Christopher Alexander, a professor of architecture at the
University of California at Berkely, who first wrote a series of books
cataloging a number of architectural patterns and describing their
application [43–45]. Patterns in Computer Science have been widely
adopted in the different phases of system development, e.g., [46–49].

A process can be specified using different (standard) modeling
notations. In the context of this work, we have adopted the Business
Process Modeling Notation (BPMN) [50]. BPMN is a process modeling

1 Sometimes this matrix is presented in its transposed form.

2 The concept of layer presented here is inherent to the construction method.
The initial gene layer depends on which set of seed genes we start with and the
following layers will depend on the information obtained from the data and
previous biological knowledge. Seed genes selection is carried out based on actual
biological knowledge, which can be obtained from ontologies and/or functional
annotation databases, such as Gene Ontology (GO) [39], KEGG [40] and REACTOME
[41].

3 Candidate genes are all genes not already included in the growing network.
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