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a b s t r a c t

In this paper a general framework is presented for morphological modeling of cardiac signals from a
signal decomposition perspective. General properties of a desired morphological model are presented
and special cases of the model are studied in detail. The presented approach is studied for modeling the
morphology of electrocardiogram (ECG) signals. Specifically, three types of ECG modeling techniques,
including polynomial spline models, sinusoidal model and a model previously presented by McSharry
et al., are studied within this framework. The proposed method is applied to datasets from the PhysioNet
ECG database for compression and modeling of normal and abnormal ECG signals. Quantitative and
qualitative results of these applications are also presented and discussed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Morphological modeling of the electrocardiogram (ECG) has a
broad range of applications in cardiac signal studies. Realistic
signal generators used for evaluating bio-instrumentation systems
[1], biosignal compression [2], classification [3] and denoising [4]
are among the different applications that benefit from realistic
morphological models.

One of the first works in ECG modeling has been presented by
Young et al., who studied the problem of ECG representation
within a signal decomposition framework [5]. The morphological
model proposed by McSharry et al., and its extensions, are among
the most popular models of the ECG, which are able to produce
ECG signals of arbitrary morphology and heart rate [6–9]. The data
flow graph (DFG) model is another ECG model, which is based on
piecewise curve modeling. It produces the ECG by periodically
switching between smaller waves representing the P, QRS, and
T-waves [10]. Another piecewise model is the generalized ortho-
gonal forward regression (GOFR), which uses the Gaussian Mesa
function and other extensions for ECG modeling [11]. Piecewise
modeling of the ECG is rather promising, but is challenging for
finding closed-form relations for the model parameters.

Although the idea of signal decomposition-based modeling has
been previously used (although implicitly) for ECG modeling, to
the best of our knowledge the discrete ideas and methods have not
been unified and categorized from a general perspective. In this

work, based on the theory of signal decomposition, a general
framework is presented for morphological modeling of cardiac
signals. Based on this idea, a set of desired properties for a generic
decomposition-based model is presented and studied. It is shown
that many of the previous researches in ECG modeling can be
formulated and extended within this framework for normal and
abnormal ECG modeling. As a typical case study, the method is
applied to the problem of ECG compression and normal/abnormal
ECG modeling.

The rest of the paper is organized as follows. In Section 2, the
problem of morphological modeling is studied from a general
signal decomposition viewpoint. In Section 3, the presented frame-
work is used for morphological ECG modeling using various
basis functions. The applications of these models are presented
in Section 4. Some general remarks and future perspectives are
presented in the final section.

2. Signal decomposition approach to morphological modeling
of single ECG beats

For a given observation x(t), the objective is to find a signal x̂ðtÞ
that is an “acceptable” model for x(t) and

x̂ðtÞ ¼ ∑
N�1

k ¼ 0
ckϕkðtÞ ð1Þ

where fϕkðtÞgN�1
k ¼ 0 is a set of functions used for signal expansion.

Considering the fact that this expansion is used for morphological
modeling of the observed signal, one can list a set of desired
requirements for this expansion, which is discussed in this section.
It should be noted that the list is not an exhaustive one and the
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listed items do not have the same priority for all applications.
As discussed in the next sections, in practice, depending on the
application, a subset of them might be fulfilled by a morphological
model.

2.1. Basis functions

Assuming that x(t) is an energy signal, i.e., xðtÞ∈L2ðRÞ, in order
to be able to approximate any given x(t) in the form of (1), the set
of functions fϕkðtÞg should form a frame for the space of desired
signals, i.e., L2ðRÞ ¼ spanfϕkðtÞg. It is further convenient if fϕkðtÞg
also forms an orthonormal basis, so that the expansion is irredun-
dant and the relative amplitudes of ck convey information about
the relevance of each basis function in constructing a signal.

The basis functions may generally be signal dependent, like the
Karhunen Loève Transform (KLT), which derives the basis func-
tions according to the statistical properties of the desired signals
[12, Chapter 11]. Although, signal dependent basis functions can
lead to expansions with minimal redundancy, the training stage
required for finding their basis functions is rather limiting. There-
fore, independent basis functions are more appealing. Examples of
both types of expansions are presented in Section 3.

2.2. Signal approximation

A very important property for an “acceptable” model is its
ability in signal approximation, i.e., defining the modeling error

eðtÞ ¼ xðtÞ�x̂ðtÞ ð2Þ
the energy of e(t) should be within an acceptable range. Consider-
ing the fact that the observation x(t) can be rather noisy, an ideal
model does not necessarily have a zero error. In fact, while the
model x̂ðtÞ should overall resemble x(t), there are always some
noisy fluctuations within x(t) that should be neglected by the
model. In other words, denoising is somewhat intrinsic to mor-
phological modeling. Nevertheless, the basis functions should
generally have the property that the energy of approximation
error converges to zero as the model order increases (N-1).
This property is guaranteed for fϕkðtÞg that forms an orthogonal
basis [13].

For polynomial basis functions, which are later studied, the
hereby described signal approximation property is a restatement
of the well-known Savitzky–Golay data smoothing method [14].

2.3. Parameter identification

All generic models have unknown parameters, used as degrees
of freedom. The simplicity of identifying these parameters is
another important issue in modeling problems. For the proposed
signal decomposition scheme, having selected the basis functions
fϕkðtÞg, the only parameters to be identified are the expansion
coefficients fckg. The following cost function can be minimized to
find the parameters that minimize the energy of the residual error
signal [15, Chapter 4]:

J ¼
Z 1

�1
jeðtÞj2 dt ¼

Z 1

�1

���xðtÞ� ∑
N�1

k ¼ 0
ckϕkðtÞ

���2 dt ð3Þ

The minimization of (3) with respect to the coefficients ck, leads to
the following optimal solution:

copt ¼Φ�1x ð4Þ
where Φ∈RN�N and x∈RN are, respectively, matrices and vectors
with the following entries:

Φi;j ¼
Z 1

�1
ϕiðtÞϕn

j ðtÞ dt ði; j¼ 0;…;N�1Þ

xi ¼
Z 1

�1
xðtÞϕn

i ðtÞ dt ð5Þ

It is evident that if fϕkðtÞg forms an orthonormal basis, we have
Φ¼ I and copt ¼ x. It can be shown that (4) is also the maximum
likelihood (ML) estimate of the coefficient vector c, under the
assumption of a white Gaussian distribution for the modeling
error e(t) (cf. [16, Chapter 4]).

It should be noted that (4) is not directly applicable for signal
dependent basis functions described in Section 2.1; since in this
case, besides the coefficients ck, fϕkðtÞg also has unknown para-
meters that should be found in minimizing (3). This problem
commonly leads into a nonlinear optimization problem. In that
case, expectation maximization is one of the most common appro-
aches for finding the unknown parameters within a statistical
framework [17]. Nonlinear least-squares is a classical alternative
for deterministic and statistical frameworks [18].

2.4. Local control

In many signal expansion models, the change of a single
parameter has global effects on the entire signal. It is therefore
difficult to predict the impact of a single parameter on the local
properties of the reconstructed signal. In the hereby signal
decomposition framework, local or global control over the model
properties is directly related to the property of the corresponding
basis functions of the expansion, and for many applications it is
desirable to have basis functions that permit local control over the
model parameters. Examples of this property are presented in
Section 3.

2.5. Physiological interpretation

Besides the general mathematical properties of signal decom-
position-based modeling, another useful property of a model is to
be able to decompose a given signal in terms of physiologically
meaningful components. For instance, depending on the applica-
tion, decomposing an ECG signal into the well-known P, QRS, and
T waves is physiologically more meaningful than its decomposi-
tion into sinusoidal harmonics; although the former decomposi-
tion might be at the cost of a mathematically redundant basis such
as Gaussian functions (cf. Section 3.2).

2.6. Dynamical representation

For several applications, a dynamical representation of a signal
model is required, i.e.,

d
dt

x̂ tð Þ ¼ f x̂ tð Þ; t� � ð6Þ

This representation does not generally exist for all models, and in
case of existence it is not unique. However, assuming that x̂ðtÞ
is decomposable in the form of (1), the problem of finding a
dynamical representation for x̂ðtÞ can be reduced to the problem of
finding a dynamical representation for its basis functions:

d
dt
ϕ tð Þ ¼ g ϕ tð Þ; tð Þ

x̂ðtÞ ¼ cTϕðtÞ

8><
>: ð7Þ

where

c¼ ½c0; c1;…; cN�1�T

ϕðtÞ ¼ ½ϕ0ðtÞ;ϕ1ðtÞ;…;ϕN�1ðtÞ�T ð8Þ
A special application of this representation is for signal denoising
using Kalman filters [4,19]. In this application, (7) can be used to
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