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a b s t r a c t

Continuous positive airway pressure treatment (CPAP) is administered to treat the common disorder of
obstructive sleep apnea. However, patients receiving CPAP treatment without a sleep assessment and
clinical diagnosis often do not feel or understand the improvement in their condition, necessitating a
sleep quality improvement index for physicians to analyze improvements in patient treatment rapidly.
This work presents a novel sleep quality evaluation system that calculates the improvement value for
sleep quality using electroencephalogram and electrocardiogram signal features, as well as fuzzy
inferences. Experimental results indicate that the sleep quality improvement rating of the proposed
system and that of the apnea–hyponea index correlate with each other. Importantly, the proposed system
can identify considerable levels of improvement in the physiological signals of patients having under-
gone CPAP treatment.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Obstructive sleep apnea (OSA), a sleep breathing disorder,
happens in more than 2–4% adult general population. It is
characterized by complete or incomplete airway collapse during
sleep. The repeated collapses of the airway cause airflow limita-
tion, oxygen desaturation, sleep fragmentation or both [1]. Sleep
apnea is often diagnosed by capturing and analyzing physiological
signals from polysomnogram (PSG), including an electroencepha-
logram (EEG), electrocardiogram (ECG), electromyogram (EMG),
and oxygen saturation (SaO2) [2,3].

Sleep apnea treatment methods include mouthpieces [4,5],
upper airway reconstruction, medication [6–10], and continuous
positive airway pressure (CPAP) therapy [11–13]. The treatment
mouthpiece is a repositioning dental fitting that supports relaxed
muscles. However, this treatment is only effective for patients with
mild to moderate sleep apnea and fails to improve the condition of
severe apnea patients. In contrast, upper airway reconstruction
and CPAP therapy benefit patients to a certain extent. Although
Robinson found that upper airway reconstruction and CPAP do not
significantly differ in treatment outcome, upper airway recon-
struction more adversely impacts patients [12]. CPAP therapy is

thus a more common option than upper airway reconstruction.
CPAP therapy involves fitting patients with a face mask treatment
device that delivers air pressure into their airway at designated
times. The pressure titration is adjusted according to the patient's
adaptability and severity [13]. In addition to treating and improv-
ing the conditions of OSA patients, CPAP therapy also benefits
cardiovascular disease patients. Owing to its non-invasiveness,
CPAP has fewer side effects than upper airway reconstruction, and
alleviates the symptoms of heart disease, cardiovascular disease,
and hypertension patients. While considering CPAP as the most
effective treatment method, Peled et al. found that long-term CPAP
treatment improves the conditions of heart disease patients [14].
Furthermore, Butler et al. noted that CPAP treatment increases
heart rate variation and parasympathetic nervous system activity
of congestive heart failure patients [15]. Finally, Shinjuku et al.
found that CPAP therapy alleviates hypertension [16].

Despite the effectiveness of CPAP as a treatment method, most
patients are unaware of the subsequent improvement in or improve-
ment levels for sleep quality. Treatment occurs mainly at night, after
patients have fallen asleep. Therefore, patients who do not experience
day time sleepiness or those with cardiovascular diseases often fail to
subjectively recognize changes in sleep conditions. Therefore, the
work develops a novel sleep quality evaluation system by using non-
invasive physiological signals to analyze the pre- and post-treatment
sleep quality of patients who received CPAP therapy and determine
whether sleep quality has improved.
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Meaningful characteristics or features are selected and
recorded, along with the sleep quality evaluation value (SQEV)
estimated using the fuzzy method. Experimental results demon-
strate the effectiveness of the proposed system in detecting
improvements in sleep quality of patients after CPAP therapy.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 then introduces the system
architecture. Next, Section 4 compares the experimental results
of this work with those of previous works. Finally, Section 5 gives
discussion and conclusions.

2. Related work

2.1. OSA disease signal analysis

Numerous methods can detect OSA. In addition to adopting
different signals, these methods can be broadly classified into
time, frequency, and time–frequency domains [17]. Time domain
processing typically involves using the wavelet transform [18,19]
and Hilbert–Huang transform (HHT) to extract and analyze signal
features [20]. By using a discrete wavelet transform and contin-
uous wavelet transform, Tagluk et al. captured wavelet coefficient
features, incorporating them into an artificial neural network for
training and classification [21]. According to those results, patients
were classified as having one of following three types: obstructive
sleep apnea, central sleep apnea, and mixed sleep apnea. Hsu et al.
captured sleep-related delta wave frequency bands by using HHT
from EEG signals; OSA was also detected using the variance [22].
Similarly, based on a wavelet transform and artificial neural
network, Romero et al. classified the apnea type [23].

The frequency domain focuses on specific time intervals and,
within these time frames, calculates the size or relationship of
each frequency. Among the most common approaches include the
Fourier transform [24,25] and calculation of power spectral
densities (PSD). Yildiz et al. used an ECG as a diagnostic procedure
for OSA patients [26]. The ECG waveform consist of three funda-
mental waveforms: P, QRS, and T. ECG-derived respiratory (EDR)
signals are alternative respiration signals obtained from heart rate
variability (HRV). By using a fast Fourier transform, that work also
obtained the PSD features from HRV and EDR; OSA patients were
then classified by using least squares support vector machines on
the features. Moreover, based on the Fourier transform, Zywietz
et al. classified ECG recordings into four portions: ultra-low
frequency (i.e. 0–0.013 Hz), very-low frequency (i.e. 0.013–
0.0375 Hz), low frequency (i.e. 0.0375–0.06 Hz), and high fre-
quency (i.e. 0.17—0.28 Hz) [27]. Whether the participants
were experiencing OSA on a minute-by-minute basis was evalu-
ated using multiresolution analysis. Based on the Fourier trans-
form to EEG recordings, Bandla et al. captured delta waves and
observed changes during an OSA episode and without OSA [28].
Kim analyzed how patients with various levels of OSA differ, as
well as their changes before awakening by performing a PSD
transformation of the R wave to R wave (RR) interval in ECG
signals [29]. Finally, based on frequency spectrum analysis of EEG
recordings, Grenèche et al. examined how OSA patients and
individuals without OSA differ in alpha, beta, delta, and theta
waves [30].

The time–frequency domain combines the transformation or
transforms methods of the previously mentioned domains [31].
In particular, time domain transformations are performed initially
before applying frequency domain transformations to the data
obtained. Based on a wavelet transformation of EEG signals,
Álvarez et al. filtered four frequency bands (i.e. alpha, beta, delta,
and theta) [32]. These four frequency bands and SaO2 signals were
processed with a discrete Fourier transform to achieve PSD

transformation. The peak amplitude of the post-transformed
SaO2 signal, power corresponding to the SaO2 peak amplitude
range for the EEG, and power corresponding to the four wave
bands of the EEG were subsequently used as the frequency
spectrum density features values. Finally, the frequency median
and spectral entropy were obtained. Also, the features were
calculated using the Kolmogorov–Smirnov and Shapiro–Wilk tests
to differentiate between patients with and without the disorder.
By applying a short-time Fourier transform to ECG signals,
Manrique et al. extracted 10 characteristics each from the spectral
centroids, spectral centroids energy, and cepstral coefficients [33].
Moreover, the average person and sleep apnea patients were
compared by using the time domain and frequency domain as
the horizontal and vertical axes.

2.2. Sleep quality evaluation

Sleep quality evaluation methods are generally classified into
questionnaires, sleeping posture and position measurements, and
physiological signal analysis. Questionnaires involve the self
reporting of participants regarding their records of sleeping
conditions and sleeping durations. Buysse et al. used question-
naires, where each response yielded different scores, to calculate
the Pittsburgh sleep quality index (PSQI) in order to evaluate the
sleep quality of participants [34,35]. Buysse et al. compared
how PSQI and the Epworth sleepiness scale (ESS) differ from each
other, indicating that PSQI can more accurately reflect all-night
sleeping conditions, whereas ESS reflects only the wakefulness
and sleepiness of patients during the day time. Aloba et al.
analyzed the feasibility and applicability of employing the PSQI
to students by comparing PSQI and the diagnosis of each student
[36]. According to their results, PSQI scores and sleep disorders
correlated well with each other. Sleeping posture and position
measurements involve either installing sensors on a bed to detect
the frequency of all-night body movements or using image signal
detection of body movement data to evaluate all-night sleep
conditions. Gaddam et al. designed a home sleep quality assess-
ment system, in which sensors were placed at the four corners of a
bed; weights detected by the four sensors were recorded as well
[37]. This method evaluates sleep quality by determining the
frequency of postural and position changes during sleep. Majoe
et al. calculated PSD by using ECG signals and detecting RR
intervals [38]. All-night sleep conditions were then evaluated
using these features and body movement data captured by a video
camera.

Evaluating all-night sleep based on physiological signals
generally involves processing and capturing features from various
signals, including all-night EEG, ECG, and SaO2 signals. Bsoul et al.
placed a heart rate sensing device on participants and, then,
transmitted the data to a cell phone via Bluetooth transmission
for initial pre-processing [39]. Data was then sent to a server via
wireless Internet for instant classification and determination,
where signal features (e.g., mean, standard deviation, and stan-
dard deviation root mean square of the RR sequence) were
captured. Alternatively, EDR can extract the amplitude means
and standard deviations. The very-low frequency, low frequency,
and high frequency feature values in these two sequences were
captured using a fast Fourier transform. These values were then
input into the support vector machine to classify and evaluate
sleep quality. In contrast, Peng et al. extracted features from heart
rate, sound, and image signals; a support vector machine was also
used to calculate sleep duration and latency or delay to evaluate
sleep efficiency [40]. Donahue et al. evaluated sleep conditions by
monitoring electro-oculogram signals to determine all-night
sleeping cycles and periods [41].
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