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a b s t r a c t

Dimensionality reduction is necessary for gene expression data classification. In this paper, we propose a
new method for reducing the dimensionality of gene expression data. First, based on a sparse
representation, we developed a new criterion for characterizing the margin, which is called sparse
maximum margin discriminant analysis (SMMDA); this approach can be used to find an optimal
transform matrix such that the sparse margin is maximal in the transformed space. Second, using
SMMDA, we present a new feature extraction method for gene expression data. Third, based on SMMDA,
we propose a new discriminant gene selection method. During gene selection, we first found the one-
dimensional projection of the gene expression data in the most separable direction using SMMDA. Then,
we applied the sparse representation technique to regress the projection, and we obtained the relevance
vector for the gene set. Discriminant genes were then selected according to this vector. Compared with
the conventional method of maximum margin discriminant analysis, the proposed SMMDA method
successfully avoids the difficulty of parameter selection. Extensive experiments using publicly available
gene expression datasets showed that SMMDA is efficient for feature extraction and gene selection.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid development of microarray technologies, which can
simultaneously assess the expression level of thousands of genes,
makes the precise, objective, and systematic analysis and diagnosis
of human cancers possible. By monitoring the expression levels of
thousands of genes in cells simultaneously, microarray experiments
could lead to a complete observation of the molecular variations
among tumors and hence result in a reliable classification.

Gene expression data from DNA microarrays can be character-
ized by many variables (genes), but with only a few observations
(experiments). Mathematically, the data can be expressed as a
matrix X ¼ ðxijÞm�n, where each row represents a gene and each
column represents a sample or a patient for tumor diagnosis. The
numerical value of xij denotes the expression level of a specific
gene iði¼ 1;2; :::;mÞ in a specific sample jðj¼ 1;2; :::;nÞ. Statistically,
the fact that there is a very large number of variables (genes) with
only a small number of observations (samples) makes most of the
classical data analysis methods infeasible, including classification.
Fortunately, this problem can be avoided by selecting only the
relevant features or extracting the essential features from the
original data, where the former methodology belongs to feature

selection or subset selection and the latter is called feature
extraction. For feature selection, i.e., selecting a subset of genes
from the original data, many related studies on tumor classifica-
tion have been reported [1–4,11,12,21–23]. Moreover, a compara-
tive study of discrimination methods based on selected sets of
genes can be found in the literature [5].

Feature extraction is another type of widely-used method for
tumor classification. Instead of selecting key genes from expres-
sion data, feature extraction methods aim to extract the most
representative features with low dimensions from the original
data. The popular feature extraction methods involved in gene
data analysis include principal component analysis (PCA), linear
discriminant analysis (LDA), complete PCA plus LDA [13], and
partial least squares (PLS) [6]. A systematic benchmarking of these
methods is reported in the literature [7]. These methods have good
performance on tumor classification; however, they do not work
well for non-Gaussian data sets [8]. To overcome this problem,
Fukunaga and Mantock [9] presented a method called nonpara-
metric discriminant analysis (NDA). This method is a classic
margin-based discriminant analysis. In recent years, many other
nonparametric discriminant analysis methods have been devel-
oped, such as nonparametric feature analysis (NFA) [8] and
maximum margin criterion (MMC) [10].

Maximum margin criterion for robust feature extraction can
avoid the small sample size (3s) problem, i.e., the size of the
samples is very small compared with the dimension of the
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samples. In a geometrical sense, MMC projects input patterns onto
the subspaces spanned by the normals of a set of pairwise
orthogonal margin maximizing hyperplanes. It aims to maximize
the average marginal distances between different classes, and the
corresponding features can enhance the separability better
than PCA and LDA (Fig. 1). Experimental results on face recognition
[14–16] indicate that the method can be efficiently used for
discriminant feature extraction. Similar to face recognition, the
microarray data typically contains thousands of genes on each
chip, and the number of the collected tumor samples is much
smaller than that of the genes [17,18]. Therefore, gene expression
data analysis also needs an effective discriminant analysis method
for feature extraction, which aims to find the optimal projection
such that the maximum margin criterion is maximized after the
projection of the samples.

MMC is regarded as a nonparametric extension of LDA [19].
It measures between-class scatter based on marginal information,
using the K-nearest neighbor technique. The nonparametric dis-
criminant analysis method, however, encounters the problem of
how to choose the optimal K. In addition, the weighting function
used to deemphasize the samples far from the classification
margin is too complicated. To solve these problems, in this paper,
we propose a new maximum margin characterization method by
virtue of sparse representation because it has a discriminative
nature for classification [20]. The presented method, called sparse
maximum margin discriminant analysis (SMMDA), can success-
fully avoid the difficulty of parameter selection and does not need
the weighting function.

SMMDA, as a nonparametric discriminant analysis method for
feature extraction, does not need to select the parameter K.
Moreover, it obtains the number of margin samples flexibly by
using a sparse representation technique. In addition, SMMDA can
be used for gene selection. Gene selection has the following
biological explanation: most of the abnormalities in cell behavior
are due to irregular gene activities, and thus, it is critical to
highlight these specific genes [18]. SMMDA could find the one-
dimensional projection of gene expression data in the most
separable direction; thus, we can use the sparse representation
technique to regress the projection to obtain the relevance vector
for the gene set and to select the genes according to the vector.

The remainder of this paper is organized as follows. Section 2
describes the method proposed in this paper. The maximum
margin criterion is first presented, and the algorithms of sparse
maximum margin discriminant analysis for feature extraction and
gene selection are consequently given. Section 3 presents the
numerical experiments. Section 4 concludes the paper and out-
lines directions for future work.

2. Methods

2.1. Maximum margin criterion

We are given ðx1; y1Þ; ðx2; y2Þ; :::; ðxn; ynÞ∈ℝm � C1; :::;Cl
� �

, where
sample xi is an m-dimensional vector and yi is the corresponding
class label for sample xiði¼ 1;2; :::;nÞ. The maximum margin
criterion aims to maximize the distances between classes after
the transformation, and the criterion is [10]

J ¼ 1
2

∑
l

i ¼ 1
∑
l

j ¼ 1
pipjdðCi;CjÞ ð1Þ

We can use the distance between the mean vectors as the distance
between classes, i.e.,

dðCi;CjÞ ¼ dðmi;mjÞ ð2Þ

where mi and mj are the mean vectors of class Ci and class Cj,
respectively. The variables pi and pj are a priori probabilities of
class Ci and class Cj, respectively. Eq. (2) does not take the scatter
of the classes into account; thus, it is not suitable for classification.
Even if the distance between the mean vectors is large, it is not
easy to separate two classes that have the large spread and that
overlap with each other. In statistics, we usually use the overall
variance tr Sið Þ to measure the scatter of the data, where Si is the
covariance matrix of class Ci.

Then, we define the interclass distance as:

dðCi;CjÞ ¼ dðmi;mjÞ−trðSiÞ−trðSjÞ ð3Þ

With Eq. (3), we can decompose Eq. (1) into two parts

J ¼ 1
2

∑
l

i ¼ 1
∑
l

j ¼ 1
pipjdðmi;mjÞ−

1
2

∑
l

i ¼ 1
∑
l

j ¼ 1
pipjðtrðSiÞ þ trðSjÞÞ ð4Þ

The second part equals tr Swð Þ. By employing the Euclidean
distance, the first part can be simplified to tr Sbð Þ, which measures
the overall variance of the class mean vectors.

Then, we obtain

J ¼ trðSb−SwÞ ð5Þ

A large J indicates that the class mean vectors scatter in a large
space and that each class has a small spread. Additionally, a large J
means that the samples in the same class are close to each other,
while they are far from each other if the samples are in different
classes. More details of the method can be found in [10].

Li et al. [10] proposed to use the maximum margin criterion to
find projection vectors. Now, the criterion can be defined as

J ¼ trðWT ðSb−SwÞWÞ ð6Þ

The projection vectors W that maximize Eq. (6) can be found as
the eigenvectors of Sb−Sw that correspond to the largest eigenva-
lues. The advantage of using the maximum margin criterion is that
we need not compute the inverse of Sw; hence, the singularity
problem can be avoided.

2.2. Sparse maximum margin discriminant analysis
for feature extraction

When performing dimensionality reduction, we want to find a
mapping from the measurement space to some feature space such
that J is maximized after the transformation. However, the max-
imum margin criterion (MMC) is nonparametric discriminant
analysis. It measures between-class scatter based on marginal
information, using the K-nearest neighbor technique.

Fig. 1. An illustration of the behavior of PCA, LDA and MMC for a binary
classification problem.
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