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a b s t r a c t

Models of surface electromyogram (EMG) are useful to assess the effect of geometrical or conductivity

properties of the tissue on the recorded signal. This paper provides a review of structure based models

describing specific volume conductors. The technique for the development of advanced analytical and

numerical simulators is described. A new model is also introduced, simulating a layered volume conductor

including a subcutaneous tissue with variable thicknesses, providing an approximate analytical solution in

the Fourier transform domain. Note that volume conductors are described using Poisson equation, funda-

mental model of Mathematical Physics, which applies also to mechanics, diffusion, electrostatics problems.
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1. Introduction

Mathematical modeling allows building a simulator of reality,
which could be useful to extract information on the problem at
hand, to test ideas on simulated experiments or to check the

accuracy of signal processing algorithms in extracting information
from a completely controlled system. Moreover, they can support
the estimation of parameters which are not directly accessible for
measurements (inverse problem, [1]), the optimization of detection
systems [2–4], the design of new algorithms [5,6], the interpretation
of experiments [7–10] and the evaluation of the sensitivity of
measurable variables to a variation of some parameters.

Mathematical models are usually strong simplifications of
reality. This is surely true in the case of simulating biological or
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physiological systems, as they are so much complicated. Approx-
imations can be assumed at different levels. For example, some
EMG models are phenomenological, in the sense that they mimic
the signal under some range of conditions, but without modeling
the underlying deterministic laws ruling the system from which it
is measured. The generation of EMG-like signals can be obtained
by autoregressive linear models, adapting the parameters of a
non-stationary stochastic process to experimental data [11].

On the other hand, structure based models describe the
elements, features or mechanisms of the simulated system. A
structural EMG model is built by the following steps: (1) descrip-
tion of the source (i.e., the IAP); (2) mathematical description of
the electrical properties of the tissues; (3) modeling of the
detection system (spatial arrangement, shape and size of the
electrodes); (4) description of the spatial and temporal recruit-
ment of motor units (MU; consisting of a motor neuron and the
muscle fibers innervated by it). The tissues are assumed to be
volume conductors in quasi-stationary conditions. The contrac-
tion of a muscle fiber is primed by the propagation of an IAP,
which is generated at the endplate and propagates along the
muscle fiber toward the tendons, where it extinguishes. The
diffusion of the transmembrane potential along a muscle fiber
generates a delayed contraction (related to the increase of
intracellular concentration of calcium, entering the cell through
voltage sensitive channels) which determines a variation of the
geometry of the volume conductor, which in turn affects the
diffusion of the transmembrane potential. This electro-
mechanical coupling is usually neglected in simulation.

The IAP is a bio-electric source determined by ionic currents
flowing across the fiber membrane. Such currents determine a
potential in the surrounding tissues. The mathematical descrip-
tion of the diffusion of the electric potential in the tissues leads to
a volume conduction model. The same model describes many
other different problems, e.g. concerning mechanics, fluid
dynamics, diffusion or electrostatics. Imposing proper boundary
conditions (e.g., insulation at the skin surface, if the electrical
conductivity of air is neglected), a volume conductor problem for
EMG simulation can be obtained. In general the conductivity
tensor is not homogeneous (as skin, fat, muscle, bone and in
general any specific tissue has its own electrical conductivity
[12,13]) and anisotropic (e.g., the muscle has a strong anisotropy,
as the conductivity along fibers is about 5 times larger than in the
transversal directions [12,14]). Moreover, the detailed geometry
of a physiological system is in general very complex. Thus, the
solution of the volume conductor problem for the simulation of
surface EMG is usually very complicated. Both analytical and
numerical methods have been proposed in the literature to solve
it [15–23]. Numerical methods are more flexible, but analytical
solutions are valuable to check the accuracy of numerical meth-
ods and to determine the theoretical dependence of the solution
on specific variables of the system. Moreover, they allow reducing
the computational time of a simulation. To realize that reducing
the simulation time of a single fiber potential is of great impor-
tance, consider that in a muscle like the biceps there are about
500 MUs and each MU includes a number of fibers between about
20 and 500. Simulating all fibers in the muscle would require a
great storage and computational cost. Even simulating a single
representative fiber for each MU (and smoothing someway to
represent the dispersion of endplate and fiber ends [6]) would
require important computational resources if a numerical method
is used to solve the volume conductor problem for a model with
complex geometry and conductivity.

An assumption that allows fast simulation of surface EMG and
interesting interpretations is that of space invariance of the
volume conductor. In such a case, the potential distribution over
the detection surface can be described as a propagating wave

[15]. The simulations become fast because the single fiber surface
potential can be obtained as a convolution of the current source
with a single impulse response. The system can be fully char-
acterized by a one-dimensional transfer function in the direction
of propagation of the source [14]. Moreover, the effect of the
detection system can be represented as a spatial filter.

Some works investigated also non space invariant volume
conductors [17–22], indicating the effect of tissue in-
homogeneity or geometry on the simulated EMG.

In this paper, a review of the mathematical analysis of
structure based simulation models of surface EMG is provided.
Applications of models to the interpretation of data and test of
algorithms are discussed in a second part of this work [24]. The
bio-electric source is described by a simple phenomenological
model, without describing the complex activation machinery
(requiring the description of ion fluxes across cell membrane,
with dynamics determined by variations of conductivity of
selective channels nonlinearly related to the transmembrane
potential [25]). Moreover, a spatial and temporal recruitment
simulator [26] is briefly introduced in the second part of this work
[24], but without entering the details. On the other hand, the
volume conductor problem is described in detail, reviewing the
models and the computational methods discussed in the litera-
ture. A new analytical model of simulation of surface EMG is also
proposed. A two-layer volume conductor is considered. It is
constituted by a planar muscle and a subcutaneous tissue with
thickness which varies in space. The model is not space invariant,
so that the generation of surface EMG requires the computation of
the impulse response for each position of the impulse along the
muscle fiber path. An approximate impulse response is obtained
analytically, using a regular perturbation expansion. A hierarchy
of Poisson problems is written for a simpler geometry, for which
an analytical solution can be found.

2. Analysis of volume conductor problems in surface EMG

A short review of solutions to problems for the simulation of
surface EMG is provided. For very simple problems (discussed in
Section 2.1), an analytical solution can be obtained, indicating a
decay of the potential in space proportional to the distance from an
impulsive source to the detection point. A change of variable allows
investigating also the effect of anisotropy. These results are available
only for homogeneous tissues with very simple geometry.

Much more complex models are obtained when considering
non homogeneous tissues or when the geometry breaks the
Cartesian symmetry or if muscles with curvilinear paths of the
fibers are studied. In such cases, a general analytical solution is
hard to be obtained. A few conditions, discussed in Section 2.2,
can still be studied in the Fourier transform domain, where an
analytical solution is obtained, even if it is not analytically
invertible. For all other cases (discussed in Section 2.3), numerical
methods are recommended.

2.1. Simple models for which an analytical solution of the volume

conductor problem is available in the space-time domain

The tissues are assumed to be volume conductors in quasi-
stationary conditions. The electric potential is the solution of an
electrostatics equation [27]:

�rUðsrfÞ ¼ Ið x
!

,tÞ ð1Þ

where f is the electric potential (V), I is the source current density
(A/m3), and s the conductivity tensor (S/m). Eq. (1) is called
Poisson equation. Defining the geometry and the conductivity of
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