
Letter to the Editor

A Lack of statistical pitfalls in the comparison of multivariate causality measures for effective causality

a b s t r a c t

In a 2011 paper, Wu et al. Comp. Biol. Med. 41 (2011) 1132–1141, compared the performance of several

standard causal connectivity measures including Granger Causality (GC) using both simulated data sets

and real magnetoencephalography data. Parameters for the causal connectivity measures were

obtained using the Dynamic Autoregressive Neuromagnetic Causal Imaging (DANCI) algorithm. In a

letter, Dr. Florin and Dr. Pfeifer Comp. Biol. Med. 43 (2013) 131–134, outline four shortcomings of Wu

et al. Comp. Biol. Med. 41 (2011) 1132–1141, study. We provide counterarguments for the appro-

priateness of our approach and demonstrate how, despite any shortcomings, the Wu et al. Comp. Biol.

Med. 41 (2011) 1132–1141 study provides an important and valid analysis of these various causal

connectivity methods. In particular, none of the findings are consistent with limitation of the dynamic

autoregressive neuromagnetic causal imaging (DANCI) algorithm and/or Granger causality (GC) method

described by Frye and Wu Comp. Biol. Med. 41 (2011) 1118–1131. In fact, many of the limitations

raised by Florin and Dr. Dr. Pfeifer illustrate the significant advantage of the DANCI algorithm and GC

method for the analysis of causal connectivity.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

I thank Dr. Florin and Dr. Pfeifer [1] for their interest in the
manuscript that I co-authored with Wu [2]. I would have to agree
with Dr. Florin and Dr. Pfeifer’s sentiment; it is important to
evaluate the performance of the methodology used for connec-
tivity analysis. This sentiment is exactly what motivated the Wu
et al. [2] paper and the companion paper in the same issue by Frye
and Wu [3]. In Wu et al. [2] certain practical limitations had to be
made to allow the comparison of the various causality methods.
However, these limitations were not significant and do not
invalidate the results. Most importantly, none of the findings
are consistent with limitation of the dynamic autoregressive
neuromagnetic causal imaging (DANCI) algorithm and/or Granger
causality (GC) method described by Frye and Wu [3]. Below I
provide a point-by-point explanation for the suggested issues. As
the reader can see, within the limitations of Wu et al. [2], the
conclusions are sound.

2. Methodological concerns

2.1. Significance computation

Dr. Florin and Dr. Pfeifer [1] are concerned that the procedure
used to compare the accuracy of the causality methods does not
adequate represent the true accuracy of the DANCI algorithm and
GC method. Dr. Florin and Dr. Pfeifer point out that the counting
method was used to compare the various causality methods and
further points out the reason why this method for comparison

was used as well as its limitation. Specifically, Dr. Florin and Dr.
Pfeifer correctly points out that only the GC measure provides a
known statistical distribution that can be used to set a predeter-
mined significance threshold in order to determine which con-
nections are significant whereas the other causality measures do
not provide well described statistical distributions thereby limit-
ing the ability to select a comparable statistical threshold across
causality methods. Indeed, Dr. Florin and Dr. Pfeifer provides a
good argument for adopting the DANCI algorithm and GC method
as it provides a rational for determining which connections are
significant and which are not significant whereas the other
causality measures leave the procedure for determining a thresh-
old open to speculation and involve the application of various
untested methods.

However, Dr. Florin and Dr. Pfeifer argue that the 100% accuracy
found for the GC measure using the counting method is unrealistic if
the known GC statistical distribution was used to set to a threshold
based on a level of statistical significance. Dr. Florin and Dr. Pfeifer
points to the fact that statistical tests are based on a preset a
probability which, by definition, sets the level of falsely rejecting
the null hypothesis. In addition, Dr. Florin and Dr. Pfeifer go on to say
that this risk increases with the number of channels involved because
often the number of actual connections does not increase as fast as
the number of potential connections. In a footnote Dr. Florin and Dr.
Pfeifer discuss the fact that the only way to achieve 100% accuracy is
to set the a probability to zero combined with an effect size large
enough to prevent a Type 2 error from occurring. However, Dr. Florin
and Dr. Pfeifer then go on to say that in practical terms this is not
possible as a and b probabilities are inversely related.

While Dr. Florin and Dr. Pfeifer is correct that a and b
probabilities are inversely related to each other, this relationship
is not absolute, rather the relative relationship between the a and
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b probabilities depends on the effect size and the sample size.
First we will consider the effect size which is essentially the
difference between the two distribution’s means divided by the
standard deviation. With a large effect size or a large sample size,
both the a and b probabilities can be very small (near zero). Below
I illustrate this graphically with the help of G-Power version 3.1.3
(Düsseldorf, Germany).

Fig. 1A is a plot of the null distribution (H0) in red on left side
of the figure and the alternative distribution (H1) in blue on the
right side of the figure. For this illustration we will use z
distributions with standard deviations of 1. H0 has a mean of
0 while H1 has a mean of 3. In this example the a probability is
0.05. We can see that the b probability is essentially the propor-
tion of the H1 distribution that falls to the left of the critical z
(which is set by the a probability). In this example the b
probability is 0.09. Fig. 1B shows the same distributions with
the a probability changed to 0.01 which moves the critical z
higher and increases the b probability to 0.25. So we see that a
and b probabilities are indeed related for this specific set of
distributions. But now let us change the characteristics of the
distributions. Fig. 1C demonstrates the same distribution para-
meters with an increase in the effect size. The effect size can be
increased by increasing the difference between means or
reducing the standard deviation. In this case we will double the
difference between the means to 6. An a probability of 0.01
results in a b probability of 0.0001. Now, let us double the
difference between the means again to 12 (Fig. 1D). In this case
an a probability of 0.01 results in a b probability that is essentially
zero (below the limit of the software). In Fig. 1E we can even
decrease the a probability to 0.0000001 (the smallest a prob-
ability for the software) and the b probability is still essentially
zero. So, in conclusion, although a and b probabilities are not
really zero, if the effect size is large enough, the a and b
probabilities can be very close to zero and thus you can differ-
entiate the two distributions (in this case H0 and H1) from each
other with perfect accuracy in practicality. Although it could be
argued that such an effect size is not possible, in actuality this
depends on the lower limit of the magnitude of the connectivity
that is wished to be detected and the signal-to-noise ratio of the
recording instrument. However, even if one rejects this argument,
there is an alternative factor (i.e., sample size) which can improve
the ability to differentiate the two distributions (in this case H0

and H1).
In neurophysiological measurements such as magnetoencepha-

lography (MEG) and electroencephalography (EEG), sample size
can be an advantage. For example, many MEG recordings are
performed at 500 Hz or above, providing sufficient data points for
which to base connectivity calculations (at least when looking at
medium to high frequencies). In fact, in the analyses of MEG
signals during the 500 ms pre-stimulus period of a language task
using the short-window approach we were able to obtain approxi-
mately 39,300 samples per participant [4,5]. Now let us see how
large sample sizes translate to differentiating two distributions (H0

and H1). Fig. 2A demonstrates a t-distributed sample with the H0

mean set to 0 and the H1 mean set to 1 with a standard deviation
of 1. In this example the sample size is five for both groups and the
a probability is 0.05. This results in a b of 0.58. Now we can
increase the sample size by 10 fold to have 50 samples for each
distribution. With the a probability at 0.05, the b probability is
calculated as 0.0005 (Fig. 2B). If we reduce the a probability to
0.01, the b probability is calculated as 0.005 (Fig. 2C). Now if we
increase the number of samples by 10 fold again to 500 for each
distribution, we find that an a probability to 0.01 produces a b
probability that is essentially zero (Fig. 2D). Now by decreasing the
a probability to 0.0000001 (the smallest alpha for the software)
and the beta is still essentially zero (Fig. 2E).

It could also be argued that the effect size is just not big
enough even with a large sample size to separate the distribu-
tions. However if we take some examples from our application of
MEG data we can see that this is just not the case. In our studies
we used an a probability of 0.0001 and approximately 39,300

Fig. 1. Statistical distribution overlap depends on effect size. In this example Z

distributions with standard deviation of 1 are used to illustrate this effect and H0

(red distribution on left side of figure) has a mean of 0. (A) H1 (blue distribution on

right side of figure) has a mean of 3 and a probability is 0.05. (B) H1 has a mean of

3 and a probability is set to 0.01. (C) H1 has a mean of 6 and a probability is set to

0.01. (D) H1 has a mean of 6 and a probability is set to 0.01. (D) H1 has a mean of

12 and a probability is set to 0.01. (E) H1 has a mean of 12 and a probability is set

to 0.0000001. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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