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a b s t r a c t

This study investigates whether measures of knee cartilage thickness can predict future loss of knee
cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically
aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learning
framework was then trained using these maps. Compared to measures of mean cartilage plate thickness,
group separation was increased by focusing on local cartilage differences. This result is central for clinical
trials where inclusion of rapid progressors may help reduce the period needed to study effects of new
disease-modifying drugs for osteoarthritis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Knee osteoarthritis (OA) is a degenerative joint disease that,
among others, is characterised by structural changes in the
subchondral bone, osteophytes, bone marrow lesions, meniscal
tears and loss of articular cartilage. OA affects a large proportion of
the elder population and is a prevalent cause of disability [1,2].
Common symptoms include pain, joint stiffness, and decreased
motor function, leading to an impaired quality of life. To date,
there are no approved disease-modifying drugs for OA and
treatment is limited to controlling symptoms and, in severe cases,
joint replacement.

Currently, the gold standard for assessing OA progression in
clinical trials is to measure the joint space narrowing from radio-
graphs. However, this is only an indirect assessment because soft
tissue, such as cartilage, is not directly visible on radiographs. As a
consequence, joint space narrowing is insensitive to subtle carti-
lage changes which are thought to occur in the earlier stages of the
disease [3]. Development of more sensitive biomarkers that can
accurately monitor disease progression is therefore essential in the
discovery and clinical testing of new disease-modifying drug
for OA.

Magnetic resonance imaging (MRI) can give an accurate three-
dimensional representation of all diarthrodial tissues, such as
bone, cartilage and ligaments [4]. For the past decade, quantitative
measures of cartilage morphology (thickness, volume, surface
area) from knee MRI have received much attention as a way to
identify risk factors and monitor structural changes over time
[5,6]. However, results from early longitudinal studies evaluating
quantitative cartilage measures in entire cartilage plates have
varied greatly, showing annual cartilage loss ranging from 0.5%
to −8% [7,8]. In a number of recent studies, cartilage have been
examined using either detailed thickness maps [9,10] or a small
number of predefined subregions [11–14]. These studies have
shown that cartilage thickness changes are highly heterogeneous
and that regional cartilage thickness may actually increase in the
earlier stages of OA, likely due to hypertrophy or swelling [15,16].
This could help to explain some of the variations seen in earlier
studies and suggests that regional based biomarkers may be better
suited for monitoring disease progression than biomarkers based
on measures of global cartilage change.

To date, most studies of cartilage thickness have either focused
on cross sectional differences between healthy and OA knees or
investigated longitudinal changes in knees at certain disease
stages. Some work has also been done to analyse if changes in
subregional cartilage thickness are significantly different between
healthy knees and OA knees [16,17]. Yet, only a small number of
studies have evaluated MRI derived cartilage morphology mea-
sures as predictive biomarkers [18–20], and these have relied on
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measures of global cartilage thickness change. The ability to
separate slow or non-progressors from rapid OA progressors is,
however, of particular interest in clinical trials where the inclusion
of fast OA progressors may reduce the observation period and/or
population size needed to show the effect of new disease-
modifying drugs [21].

In this study, we investigate whether measures of knee carti-
lage thickness can predict future loss of knee cartilage. Using
longitudinal MRI data, a slow and a rapid progressor group is first
determined based on 1-year loss of cartilage volume. The analysis
is then performed using a novel supervised machine learning
framework trained on anatomically aligned medial tibial (MT) and
medial femoral (MF) cartilage thickness maps extracted from MRI
images at baseline. To validate the new method, it is also tested on
synthetic data and benchmarked against two well known classi-
fiers. To the best of our knowledge, this is the first study to
investigate the connection between focal cartilage thickness dif-
ferences and longitudinal loss of cartilage.

1.1. Machine learning in spatial data

A common approach in current studies aimed at identifying
regions affected by OA is to use region-wise statistical analysis. In
this setting, differences between patient groups are detected by
analysing the changes in corresponding regions across images.
This is usually done using a parametric univariate statistical test,
such as the t-test or the F-test, and the output is a map of p-values
assembled from these tests. To compensate for the multiple testing
problem, heuristic techniques, such as False Discovery Rate [22]
and the Holm-Bonferroni correction [23], are often used to deter-
mine which regions are statistically significant. However, because
regions are treated independently, this form of data analysis is
sensitive to noise and outliers. This means that region-wise statis-
tical analysis is mainly suited for data exploration and not for the
task of identifying regions that optimise the separation between
classes, such as slow and fast OA progressors.

Supervised machine learning techniques do not treat regional
measurements independently, but rather perform a joint optimi-
sation over all input measurements. In general, this makes them
better suited for classification problems than methods based on
region-wise statistical tests.

However, machine learning techniques do have some short-
comings when applied to spatial data. One of the main issues is
that most supervised classifiers ignore the strong correlation
between data in neighbouring regions. When this type of informa-
tion is incorporated into a classifier, its performance on spatial
data is generally improved. This has, for instance, been shown by
Stoeckel and Fung [24] and Lee et al. [25] who obtained good
results in the field of neuroimaging by including spatial informa-
tion in the standard SVM formulation. More recently Qazi et al.
[26] proposed a spatially regularised version of Fisher LDA which
was shown to outperform Tikhonov regularised Fisher LDA on
both synthetic data and clinical data from an OA trial.

A second challenge in classifying spatial data is that the
dimensionality of the problems is often much larger than the
number of available data samples. For instance, while a typical
data set is composed of anywhere from tens to a few hundred
images, even a small 3D-scan with 1283 voxels constitutes a
2097152-dimensional problem. This situation, known as the “large
p (dimension), small n (sample size)” paradigm [27], makes
efficient pattern recognition and accurate classification difficult.
To alleviate this problem, feature extraction or dimensionality
reduction techniques are commonly used to map the high dimen-
sional input data into to a lower dimensional feature space.
However, the dimensionality of the transformed data may still
be too high compared to the number of available data points,

particularly if the spatial component of the data is to be preserved.
To enhance the generalisation capability, many classifiers therefore
incorporate various regularisation and sparsity techniques that
constrain the space of possible solutions. Although these techni-
ques have been successfully applied to a wide range of problems,
they are not always sufficient to obtain robust models.

Here, we propose a novel framework for dealing with the large
p, small n problem in spatial data. By combining an adaptive
coarse-to-fine data analysis scheme with standard machine learn-
ing techniques, the framework seeks to reduce the dimensionality
of the classification problem. In addition, the coarse-to-fine
analysis serves as an implicit form of spatial regularisation when
classifying the data.

2. The dynamic partitioning framework (DPF)

In the following, we first outline the general workings of the
framework and then provide specific details for an implementa-
tion suited for two- and three dimensional spatial problems. Since
the framework can be applied to a number of different problem
domains, the description in this section is not specifically tied to
the problem of classifying cartilage thickness maps.

A basic assumption throughout this paper is that the input data
has been preprocessed in such a way that the biological objects
under consideration are spatially aligned and represented in a
common frame of reference. Furthermore, each object has been
divided into m “atomic” regions defined on a regular grid in
n-dimensional space and each region is represented by a k-
dimensional feature vector calculated in that region. An atomic
region may consist of a single voxel in an MRI scan but can also be
composed of a larger set of connected voxels. Similarly, the vector
that describes the region may be a scalar, e.g. cartilage thickness,
or a more advanced regional descriptor, such as the histogram of
oriented gradients [28]. Finally, each object is assumed to have a
binary label indicating its class membership. As an example, fast
OA progressors in this study are assigned class label 1 and slow/
non-progressors are assigned class label 0.

Given such a collection of m� k dimensional objects, the main
idea of the proposed framework is to treat the initial spatial
domain as one region which is adaptively bi-partitioned into
smaller subregions in such a way that the separation between
the two classes is maximised. To alleviate the large p, small n
problem, all (sub)regions are represented by a single k-dimen-
sional feature vector. When a (sub)region spans more than one of
the original m atomic regions, this vector is calculated by taking
some measure of central tendency, i.e. the mean, median, or mode,
of the feature vectors representing the involved atomic regions.
Prior to the first partitioning of the data, the dimensionality of the
classification problem is therefore reduced from m� k to 1� k.
After the first partition of the data, the classification problem
becomes 2� k dimensional and so on. If the data contains spatially
coherent regions that are different between the two classes, the
number of partitions needed to “box in” these regions is likely to
be smaller that the number of atomic regions. As illustrated in
Fig. 1, the framework therefore effectively reduces the dimension-
ality of the original m� k dimensional classification problem.
In addition, the adaptive partitioning strategy also serves as an
implicit form of spatial regularisation because the discriminative
and the non-discriminative atomic regions are grouped in separate
subregions.

In order to locate the discriminative areas in the data, the
framework works by combining a search algorithm with a super-
vised classifier in an iterative scheme. In each iteration of the
process, a hyperplane is used to partition a single region in such a
way that class separation is maximised. The search algorithm is
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