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a b s t r a c t

Searching metabolic pathways that relate two compounds is a common task in bioinformatics. This is of
particular interest when trying, for example, to discover metabolic relations among compounds clustered
with a data mining technique. Search strategies find sequences to relate two or more states (compounds)
using an appropriate set of transitions (reactions). Evolutionary algorithms carry out the search guided
by a fitness function and explore multiple candidate solutions using stochastic operators. In this work we
propose an evolutionary algorithm for searching metabolic pathways between two compounds. The
operators and fitness function employed are described and the effect of mutation rate is studied.
Performance of this algorithm is compared with two classical search strategies. Source code and dataset
are available at https://sourceforge.net/projects/sourcesinc/files/eamp/

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Using search strategies to solve different problems is common
in many areas of knowledge. In many cases, employing classical
strategies for sequential state space exploration allows to find
solutions rapidly. When all possible solutions are exhaustively
explored the strategies are called uninformed search strategies,
and this is the case of breadth first search (BFS) and depth first
search (DFS) algorithms [1]. It is a well-known fact that there
are problems in which a very high number of solutions must be
explored, making classical methods practically inapplicable. For
example, in KEGG database [2] there are around 17,000 com-
pounds with approximately 14,000 connections among them, and
a high branching factor. There are different approaches to address
these problems, among which evolutionary algorithms (EAs) have
an important place. The main difference with DFS and BFS is that
EAs do not explore the state space exhaustively, but rather
use several heuristics to select the most promising regions to
explore. These methods are grouped in four families: Genetic
Algorithms [3], Evolutionary Strategies [4], Genetic Programming
[5] and Evolutionary Programming [6]. Each one was originated by
different motivations, and they differ mainly by their representa-
tion schemes, and operators of selection and reproduction [7].

Although the convergence for genetic algorithms is guaranteed by
the schema theorem [8], real values codification is limited by the
number of bits used. Instead, the evolutionary strategies directly
use real values to encode the problem variables, but their con-
vergence depends on the operators used. Evolutionary algorithms
use stochastic search based on the evolution of a population of
candidate solutions, applying a set of operators and a fitness
function that evaluates the quality of the solutions generated.
Some interesting aspects about these techniques are the simplicity
of the operators used, the possibility of using fitness functions
with very few formal requirements, and the ability to explore
multiple points of the search space in each iteration [9]. These
characteristics make them an attractive alternative to deal with
several problems in biology [10–12].

Different search strategies to find metabolic pathways that
relate compounds have been recently proposed. The algorithm
described by Ogata et al. [13] is based on BFS and builds pathways
between pairs of compounds by the combination of allowed
relations (metabolic reactions). The method of Linked Metabolites
[14] first builds an integrated graph and then performs the path-
way search specifying a maximum number of reactions between
source and target compounds. Metabolic PathFinding Tool [15]
assigns to each operator a cost equal to the number of reactions
where the compound participates. McShan et al. [16] use the An

search algorithm to explore the solutions space guided by a cost
function based on the Manhattan distance and a heuristic function
that uses structural information of compounds to generate char-
acteristic descriptors. A more recent algorithm based on BFS is
proposed by Heath et al. [17], where a metabolic pathway linking
two compounds is found preserving a specified number of atoms
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(atom tracking) between the beginning and ending compounds.
However, these last two algorithms require information about the
molecular structure of the compounds to be used, and BFS-based
methods require a significant amount of memory to store all the
search tree. Furthermore, given that methods based on BFS look
for a specified number of pathways, the order in which the nodes
of the tree are visited can bias the search to particular solutions
(unless the successors are selected using randomized traversals).
Another alternative is based on elementary modes. These methods
use stoichiometry of reactions and several restrictions to identify
minimal sets of enzymes that can operate at steady state, with all
irreversible reactions used in the appropriate direction [18,19].
Computing all elementary modes is expensive, even for small
networks [20]. There also exist retrosynthesis-based methods that
build new metabolic pathways to produce a compound of interest
in an organism [21]. These methods begin with the desired
compound and use reverse enzymatic reactions to synthesize a
metabolic pathway from simpler compounds. Although the pro-
blem being addressed in those works is close to our own, their
objective differs from the one proposed in this paper.

Finding relationships between two given compounds is not an
easy task, in particular when data come from different sources such
as metabolic and transcriptional profiles.1 In this case, one possible
approach is to create clusters from the combined sources using a
data mining tool [22]. This way, applying the “guilt-by-association”
principle [23,24] genes and metabolites that vary coordinately can
be found. Since the relationship among metabolites and transcripts
is mainly given by metabolic pathways,2 the following step would
be searching such pathways with the available data. Traditionally,
metabolic pathways search was manually performed, but the
current increase in the volume of data demands for computational
tools to perform the search automatically [17]. Many efforts have
been made to automate the process, but obtained results are not
biologically feasible. For example, in [25] a search for metabolic
pathways with up to 9 reactions among glucose and pyruvate was
performed and approximately 5�105 metabolic pathways were
found, many of them biologically not possible.

The main contribution of this work is the proposal of
an evolutionary algorithm to find metabolic pathways, capable of
relating two compounds in a common and valid reaction chain. To
achieve this, a data mining tool was used to generate clusters from a
real biological dataset, and pairs of compounds within the clusters
were used for the genetic search of metabolic pathways. Afterwards,
objective measures were defined to quantify the performance of the
algorithms, and the effect of the mutation rate on the evolution was
studied. Finally, the proposed algorithm was compared with two
methods based on classical search algorithms.

The paper is organized as follows: Section 2 describes the
proposed algorithm for the evolutionary search of metabolic
pathways between two compounds. The data used, the objective
measures, and the results obtained are briefly described in Section
3. Finally, Section 4 presents the conclusions of this work.

2. Proposed algorithm

This section presents the proposed algorithm, that we will call
evolutionary algorithm for the search of metabolic pathways
(EAMPs)3. First, the state space and search operators employed

are defined. Then, the structure of the chromosomes and the way
the information is coded is presented. Afterwards, the genetic
operators used and their functioning are described. Finally, the
fitness function employed is presented, the terms that compose
it are analyzed and the effect that each of them produces on the
search is described.

There are different approaches to explore the space of all the
possible metabolic pathways linking two specific compounds. One
proposal consists of generating a list of compounds that must be
excluded from the search [26]. However, incorrect definitions can
exclude compounds necessary to produce results of biological
interest. A different approach was proposed in [27] where sets of
“substrate-product” binary relations were used to represent the
reactions and each relation was labeled according to its function
inside the reaction. The main stream of the pathways was built
using only the relations containing information about the trans-
formation of the substrates.

Following that idea, the state space is defined as the set C of all
metabolic compounds in the KEGG database. This database con-
tains information of genes, proteins and metabolic compounds of
hundreds of different organisms and the allowed binary relations
between compounds are describe by transformations r. The
compound on which the transformation is applied will be called
substrate s, and p will be the product or new resulting state.
Transformations will be represented as ordered pairs ri ¼ ðsi; piÞ,
with si; piAC and siapi. In addition, the substrate and product of
ri will be identified using the notation si and pi respectively, being ŝ
the initial compound and p̂ the final compound of the metabolic
pathway. In this way, a metabolic pathway is built as a sequence
of transformations that produce p̂ starting from ŝ. Finally, the
sequence of possible states q¼ ½ŝ; p1; p2;…; p̂� is defined as the
sequence of compounds that take part in the transformation.

2.1. Structure of the chromosomes

The sequence of transformations r leading to the production of
p̂ from ŝ is coded in the chromosome as c¼ ½r1; r2;…; ri;…; rN �,
where N indicates the number of genes and the sequence is read
from left to right. In this context, the term chromosome indicates a
data structure such as a vector, and should not be interpreted in a
biological way. This value can vary in the range ½1;NM �, where
NM is the maximum number of reactions the metabolic pathway
can contain. When the number of reactions exceeds this level, the
chromosome truncates to contain only the first NM reactions.

2.2. Genetic operators

This section describes the genetic operators4 designed for the
EAMP. Due to the requirements of this application in particular, it
has been necessary to make various changes to classical genetic
operators, which, if directly applied, would limit the convergence of
the algorithm. In order to facilitate their explanation, four sets
of transformations are defined. Rn contains the complete set of
allowed transformations, R1 ¼ fri\ri ¼ ðŝ; piÞg4R1 � Rn contains only
those transformations that use ŝ, RN ¼ fri\ri ¼ ðsi; p̂Þg4RN � Rn con-
tains all transformations that produce p̂, and Rþ ¼ R1 [ RN contains
the union of the two previous sets. The algorithm finds a solution
when it reaches a predefined maximum number of generations or
when the fitness of an individual takes the value 1, indicating that it
encodes a metabolic pathway that relates the indicated compounds.1 Metabolic profile: measurement of concentration levels of small molecules.

Transcriptional profile: measurement of activity levels of a set of genes.
2 A metabolic pathway is a sequence of chemical reactions that transform a

substrate into one or various products through a series of intermediary compounds.
3 Source code and dataset are available at http://sourcesinc.sourceforge.net/

eamp/

4 This general term indicates operations applied over chromosomes. For
example, the crossover operator combines genetic information of two chromo-
somes to produce a new one.
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