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a b s t r a c t

Decompression sickness (DCS) is a disease known to be related to inert gas bubble formation originating
from gases dissolved in body tissues. Probabilistic DCS models, which employ survival and hazard
functions, are optimized by fitting model parameters to experimental dive data. In the work reported
here, I develop methods to find the survival function gain parameter analytically, thus removing it from
the fitting process. I show that the number of iterations required for model optimization is significantly
reduced. The analytic gain method substantially improves the condition number of the Hessian matrix
which reduces the model confidence intervals by more than an order of magnitude.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Decompression sickness (DCS) is a man-made disease that is
caused by a rapid reduction in the ambient pressure after an exposure
to a greater pressure of sufficient magnitude and duration. The
disease affects divers, astronauts, high altitude aviators, and commer-
cial compressed air workers. While DCS can include various baro-
traumas, for the models considered in this paper, I focus on the
pathological effects caused by bubbles that can form when inert gas
dissolved in tissues comes out of solution during or after exposure to
decompression. As discussed by Francis and Gorman [1], the patho-
logical effects of bubbles include the primary effects of mechanical
compression (nervous tissue, cochlear, middle ear, blood vessel, and
endothelium), tissue compression (non-compliant tissue, nervous
tissue, blood vessels, lymphatics), and obstruction of blood vessels.
Secondary pathological effects of bubbles include activation of leuko-
cytes, endothelial cells, and platelets as well as activation of biochem-
ical pathways (coagulation, fibrosis, complement) [1]. The symptoms
of DCS can present as Type I (mild – musculoskeletal, skin rash,
lymphatic, fatigue) or Type II (serious – neurological, cardiorespira-
tory, vestibular/auditory, shock) as well as paralysis and death [2].

Recompression therapy is an effective treatment for DCS [3].
The currently recommended recompression treatments (known as
treatment Tables), may be found in the U.S. Navy Diving Manual
[4]. Type I DCS is treated with Table 5 and, if symptoms are not
completely relieved within the first 10 min at a pressure of 60 feet

of seawater, Table 6 is indicated. For treatment of arterial gas
embolism or Type II DCS, Table 6 is indicated with Table 6A
indicated for unchanged or worsening severe symptoms. For cases
where treatment with Tables 6 or 6A is ineffective, treatment of
DCS for saturation dives, omitted decompression procedures, or
for air-only treatment, other Tables are indicated. Evaluation of
recompression therapy efficacy by the U.S. Navy found that DCS
symptoms were relieved in over 90% of cases when the treatment
followed the recommended procedures [4].

The foundations of decompression models and decompression
procedures were built by the physiologist J. S. Haldane when he was
engaged by the Royal Navy in 1906 to study the disease. Together
with co-workers, Haldane developed a staged decompression proce-
dure to bring workers safely to surface pressure after prolonged
exposure to greater pressures [5]. According to Hempleman [6], “The
Royal Navy adopted the Haldane tables in 1908, and the first tables
for the USN, devised by French and Stillson in 1915, were based on
the Haldanian concepts…”. Many modifications of the dive tables,
such as the addition of tissue compartments with different half-times
or changes in allowable compartmental pressure ratios (M-values)
have been made since Haldanian tables were first put into practice
[6]. Early staged decompression tables and, in fact, many of the
modern decompression tables were/are deterministic. That is, the
tables establish a sharp boundary between safe and unsafe dives and
do not predict the risk associated with a given decompression
exposure [7].

The probabilistic nature of DCS was noted by Berghage et al. [8]
in a study involving the explosive decompression of 288 mice.
Noting the variability of DCS outcomes of divers undergoing the
same exposure to decompression, Weathersby et al. [8] used the
method of maximum likelihood [9] to study several simple
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probabilistic decompression models. These probabilistic models
assign a probability that a diver subjected to a given decompres-
sion exposure will experience DCS. This is in contrast to a
deterministic model that assumes that DCS is a binomial event.
The vast majority of recent research and development of DCS
models use the probabilistic approach.

Once a probabilistic model is developed, optimized, and vali-
dated, there is a clear and immediate question: What DCS risk is
acceptable? The issue of acceptable risk was addressed in detail by
Vann and Thalmann [10]. For hypobaric exposures, ground-based
studies indicated that neurological DCS cases were rare. Therefore,
an acceptable DCS risk of 6% was proposed for operations on the
Space Shuttle. For the more remote Space Station, 1% was pro-
posed [11]. For hyperbaric exposures, the acceptable risk varies
with discipline and with the governing body. In recreational
diving, guidance is for vanishing risk [10]. For commercial, offshore
air-diving in the North Sea, a risk of 0.5% might warrant the
curtailing of diving operations [12]. For compressed-air caisson
workers, a 2% risk was generally tolerated [13]. Current guidance
for U. S. Navy diving operations permits dives with DCS risk below
3% while dives with DCS risk 3–5% require prior approval and
dives with DCS risk greater than 5% are prohibited [14].

Although there have been several variants of survival functions
used to develop probabilistic DCS models, most currently used
probabilistic DCS models include a gain vector to scale and render
a hazard function vector dimensionless [15–17]. In our previous
work [18], we presented an analytic gain expression for a simple
subclass of DCS models – incidence only without fractional
weighting of marginal DCS events – but we did not investigate
the benefit of using the analytic gain method nor did we derive
analytic gain expressions for more complicated classes of DCS
models; for example, time of occurrence models with fractional
weighting of marginal DCS events. In this paper, I derive analytic
gain vector expressions for four classes of probabilistic DCS
models. Additionally, I prove optimality and document improve-
ments in optimization speed and fitting quality as measured by
the model's 95% confidence interval.

2. Analytic gain derivation

In this Section, I derive analytic gain solutions, prove optim-
ality, and derive Hessian matrix components for four categories of
survival models typically used for probabilistic decompression
models. In order of increasing complexity, these four model
categories include (a) incidence-only survival models, (b)
incidence-only survival models using fractional weighting for
marginal DCS events, (c) survival time models, and (d) survival
time models with fractional weighting of marginal DCS events.

2.1. Incidence-only survival models

Throughout this paper, I consider a non-homogeneous Poisson
survival process [19] of the form

PDCS ¼ 1�e�g
-
U R
-

; ð1Þ

applied to a probabilistic DCS model, where g! is a vector of tissue
compartment gains and R

!
is a hazard (or intensity) vector which

relates the severity of a decompression exposure to the probability
that a diver experiences DCS. The hazard vector R

!
generally

contains parameters, sometimes physiologic, designed to model
the uptake and elimination of gas(es) from a number of hypothe-
tical tissue compartments in the human body. Given the form of
Eq. (1), the probability of a non-event, of not experiencing DCS in

this case, is

Po ¼ e�g
-
U R
-

ð2Þ
which follows from the law of total probability. For the derivations
to follow, it will be convenient to express Eqs. (1) and (2) in a
shorthand notation. For this purpose, I use the notation

PDCS ¼ 1�e�g
-
U R
-

¼ 1�e
� ∑

C

c ¼ 1
gcRc ¼ 1� ∏

C

c ¼ 1
e�gcRc ¼ 1�ξ

P0 ¼ e�g
-
U R
-

¼ e
� ∑

c ¼ 1
gcRc ¼ ∏

C

c ¼ 1
e�gcRc ¼ ξ ð3Þ

where the index c counts over the C tissue compartments. In
Eq. (3), Rc is the hazard function for the cth tissue compartment and
gc is the unknown gain for that same tissue compartment. This
paper considers analytic methods for finding the gain vector, g!;
thus eliminating this vector from the parameter fitting procedure.

For an incidence-only survival model, the hazard function
typically has the form

Rc ¼
Z t ¼ T3

t ¼ 0
rcdt ð4Þ

where T3 is the right censoring time beyond which any follow up
as to the outcome of the exposure is lost [17,20,21]. The instanta-
neous risk kernel, rc , typically contains one or more parameters
that are found, most often, by the method of maximum likelihood
[9]. As is pointed out elsewhere [22], using the likelihood directly
suffers from numerical problems so the log likelihood

LL¼ ∑
D

i ¼ 1
ln ðPDCS;iÞδðP0;iÞ1�δ
� �

ð5Þ

is often used. In Eq. (5), δ¼ 1 if the ith decompression exposure
results in DCS and δ¼ 0 otherwise. Also in Eq. (5), D is the total
number of exposures in the data set. The model is considered
optimized when the parameter set resulting in the maximum LL
is found.

2.1.1. Analytic gain solution
In order to find an expression for the stationary gain set for a

given risk function parameter set, I require that the partial
gradient of the log likelihood function (Eq. (5)) with respect to
(w.r.t.) the gain vector must vanish. This is equivalent to optimiz-
ing the problem on a manifold defined by gain stationarity but not
stationarity of the other model parameters. Note that the candi-
date risk function set, R

!
, need not be optimal for the purpose of

finding the optimal gain set for that R
!

. For the cth tissue
compartment, where 1rcrC, the partial derivative of LL w.r.t.
the gain is

∂
∂gc

ðLLÞ ¼ ∂
∂gc

∑
D

i ¼ 1
ln ðPDCS;iÞδðP0Þ1�δ
� �" #

: ð6Þ

Now, suppose that the dive data set contains D total exposures
resulting in S cases of DCS and Z cases of no-DCS such that
Sþ Z ¼D. Then, using Eq. (3), the laws of exponents, and the laws
of logarithms, Eq. (6) becomes

∂
∂gc

ðLLÞ ¼ ∂
∂gc

∑
S

s ¼ 1
lnð1�ξsÞ þ ∑

Z

z ¼ 1
lnðξzÞ

� �
¼ ∑

S

s ¼ 1

Rc;sξs
1�ξs

� ∑
Z

z ¼ 1
Rc;z: ð7Þ

In Eq. (7), and for the following derivations, the notation Rx;y

signifies the integrated risk function for the xth tissue compart-
ment and the yth decompression exposure in the corresponding
subset of all decompression exposures. Note that the final expres-
sion in Eq. (7) can be simplified further in order to reduce the
computational operation count by multiplying each term inside
the left summation by ξ�1

s =ξ�1
s . After making this simplification,

and after equating to zero the final expression in Eq. (7), the
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