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a b s t r a c t

Error processing in subjects performing actions has been associated with the Event-Related Potential

(ERP) components called Error-Related Negativity (ERN) and Error Positivity (Pe). In this paper, features

based on statistical measures of the sample of averaged ERP recordings are used for classifying correct

from incorrect actions. Three feature selection techniques were used and compared. Classification was

done by means of a kNN and a Support Vector Machines (SVM) classifier. The use of a leave-one-out

approach in the feature selection provided sensitivity and specificity values concurrently higher than or

equal to 87.5%, for both classifiers. The classification results were significantly better for the time

window that included only the ERN, as compared to time windows including also Pe.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Event-Related Potentials (ERPs) are a class of electroencepha-
lographic (EEG) recordings, which are generated when a subject is
presented with external stimuli or events. Their high temporal
resolution provide for non-invasive measurement of brain elec-
trical activity related to cognitive operations, which are activated
for processing the stimuli or the events. The potential curves
possess local maxima and minima called components of the ERP.
The components are denoted by their positive or negative sign
and their approximate time of appearance, in ms after the
administration of the stimulus or the occurrence of the event,
e.g., N100, P300, N400 and P600. Relations have been established
between measurable characteristics of the components and spe-
cific brain processes concerning attention, orienting reaction,
expectancy and decision making [1–3].

Error processing, an aspect of performance monitoring, is
necessary for detecting errors, as fast as possible, and for
optimizing future response behavior [4]. The electrophysiological
mechanisms and the psychological correlations of error proces-
sing have been intensively investigated using the Error-Related
Negativity (ERN), also called error negativity (Ne) [5–8]. ERN is a
distinct ERP component, appearing as a negative deflection in
response-locked averaged EEG recordings, elicited immediately
after an error has been committed by the subject whose EEG is

recorded. It peaks at approximately 50–100 ms after the erro-
neous response. ERN is consistently observed when a mismatch
occurs between representations of anticipated and actual
responses [5,6,9]. A second ERP component, associated with
erroneous responses, the Error Positivity (Pe) generally follows
the ERN. It is a positive deflection, peaking at around 200–500 ms
after the error [8,10,11]. The role of Pe is still rather unclear [12].
Pe amplitude has been found to be diminished on unaware errors
compared to consciously perceived errors [11,13], and it has
therefore been related to error awareness [14], reflecting con-
scious error processing or updating of the error context
[11,15,16]. Although ERN and Pe seem to be at least partially
independent, for example attentional control of action monitoring
appears to be reflected by Pe and not ERN during a task-switching
paradigm [17], both error-related components might indicate
aspects of negatively valenced violations of expected outcomes,
to be used in executive control functions [15,18]. In addition, both
components seem reliable and are well-suited for assessing trait
characteristics and individual differences [19]. ERN has also been
found in experimental paradigms exploring aspects of error
monitoring, reaching beyond the ‘‘immediate’’ brain response of
a subject to his/her own actions. For example, ERN is elicited in
subjects making choices, after the presentation of a feedback
stimulus that indicates incorrect performance of the subject [20].
When subjects observed the incorrect actions of another person,
an ERN component was recorded (termed in the following
‘‘observation’’ ERN), albeit with a lower amplitude than the ERN
for self-generated errors and a later occurrence of the peak [21].
ERN presents special interest for implementing Brain–Computer
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Interface (BCI) systems [22,23]. In such systems it is common that
an interface has to recognize a subject’s intent. When the subject
perceives that the interface made an error in recognizing his/her
intent, it has been shown that another kind of error-related
potential (termed ‘‘interaction ErrP’’) is elicited [24,25].

Classification algorithms to discriminate between ERPs have
been developed for various applications. In [26], ERP data
obtained from both normal control subjects and chronic schizo-
phrenic patients were classified, using a parallel principal com-
ponent neural network. The proposed architecture provided
overall classification accuracy up to 90%. In [27], genetic algo-
rithm and a fuzzy ARTMAP classifier were combined to identify
the discriminatory subset of the feature set for classification of
alcoholics and non-alcoholics using brain rhythm extracted dur-
ing visual stimulus. The feature set consisted of seven spectral
power ratios extracted from multi-channel visual evoked poten-
tial (VEP) recordings. The classification accuracy reached 95.9%. A
computer-based classification system capable of distinguishing
patients with depression from normal controls using the P600
ERP component was presented in [28]. The proposed system used
a combination of Support Vector Machines (SVM) classifiers and a
majority-vote engine. The obtained classification accuracy was up
to 94%. In [29], single-trial EEGs were classified by means of a
perceptron artificial neural network (ANN). Features were
extracted from multichannel EEG using an algorithm that com-
bined common spatial subspace decomposition with Fisher dis-
criminant analysis. The obtained classification accuracy was 84%.
In another approach, scalp-recorded ERPs were first transformed
into intracranial electrical currents [30]. Then, multivariate auto-
regressive (MVAR) model coefficients of the current time series,
selected by the simulated annealing (SA) technique, were used as
features in order to differentiate between normal controls and
first-episode schizophrenic patients. The multi-layer perceptron
(MLP) ANN was used as classifier, reaching 93.1% classification
accuracy. In a recent investigation of attentional processes, target
categorization responses from averaged ERPs were classified into
two classes (target and non-target stimuli) using six different
classifiers: Euclidean classifier (EC), Mahalanobis discriminant
(MD), quadratic classifier (QC), Fisher linear discriminant (FLD),
multi-layer perceptron (MLP) ANN and SVM. The best overall
classification accuracy (91–92%) was provided by the non-linear
and non-parametric classifiers QC, MLP and SVM [31].

The existence of error-related ERPs of subjects, who either
commit errors or observe errors committed by other persons or
interfaces, creates the challenge to develop classification systems.
The ultimate aim of those systems is to discriminate between
correct and incorrect responses in real-time, on the basis of single-
trial EEG recordings. During the last decade, research efforts have
been made in that direction, for improving the performance of BCI
systems. In a study classifying ERNs evoked by the subjects’ own
response, classification performance, as expressed by the area
under the Receiver Operating Characteristic (ROC) curve, reached
0.91, using a Gaussian classifier [32]. In another work, more than
85% of errors were detected using Fisher’s Discriminant classifier
with adapted bias [33]. Ferrez and Millan [25] used a Gaussian
classifier for discriminating between correct and incorrect single-
trial interaction ErrPs generated during simulated brain–computer
interaction. The mean percentage of correctly recognized error trials
was at least 79% and the mean percentage of correctly recognized
correct trials was at least 82.4%. The same classifier was used in a
recent study of Chavarriaga and Millán [34], where the focus was on
the observation ERN of a human user observing the performance of
an external agent. Mean classification accuracy was 75.81% and
63.21% for correct and error trials, respectively, when the agent’s
error rate was 20%, and 64.42% and 59.36% for correct and error
trials, respectively, when the agent’s error rate was 40%.

In a previous work [35], the MLP ANN and the Fuzzy C-Means
(FCM) classifiers were used for differentiating both between ERPs
generated in correctly or incorrectly responding subjects (referred
to as ‘‘actors’’) and between observation ERNs elicited in subjects
(referred to as ‘‘observers’’) who observed those actions. Features
were extracted through the MVAR model in combination with
the SA technique, using the averaged ERPs of the actors and the
observers, respectively, for the two classification tasks. From the
available set of the whole-head 47 electrodes montage, two sub-
regions were used for extracting MVAR features. The first
sub-region (SR-1) excluded the outermost electrodes. The second
sub-region (SR-2) included only electrodes around the vertex. The
contribution of ERN alone, as well as the combination of ERN and
Pe, in providing features, was investigated. The classification
accuracy for classifying correct and incorrect actions reached
86%, for both classifiers, for both sub-regions. For the MLP ANN,
for SR-1 and using the time window that was expected to contain
information only about the ERN, all incorrect actions were
detected by the classifier. For the MLP ANN, for SR-2, a notable
improvement for the classification accuracy – from 76% to 86% –
occurred when the time window expected to contain information
both for the ERN and the Pe was used. The classification accuracy
for classifying observation ERNs reached 84%, for MLP ANN, for
both sub-regions, and 87% for the FCM classifier, for SR-2. For the
classification of observation ERNs, an improvement in classifica-
tion accuracy was gained, for both classifiers and sub-regions,
when features were extracted from the time window expected
to contain information both for the ERN and the Pe, instead
of the time window that was expected to contain information
only about the ERN. Although the results of that previous
study were satisfactory concerning the classification accuracy
reached, the intrinsic uncertainty in detecting the MVAR model
order, as well as the inexistence of methods other than extensive
trial-and-error for selecting an appropriate layer structure for the
MLP, was a motivating factor for investigating, on the same
data set, other feature selection techniques and classifiers. Future
transition from average-based to single-trials classification sys-
tems is expected to deteriorate the performance of any classifica-
tion system. Therefore, the average-based system should have
both a reliable performance and as high as possible classification
accuracy. In this scope, the main aims of the present work were as
follows: (i) to use features mainly based on statistical measures of
the sample of the averaged ERPs, (ii) to compare, in a statistically
robust manner, different feature selection techniques and two
classifiers, the k nearest neighbor (kNN) and SVM, in order to
achieve reliable classification results better than in [35] and
independent from the internal parameter of the classifiers and,
finally, (iii) to test whether classification was statistically sig-
nificantly improved by including the Pe ERP in the data analysis.
In the present work, the investigation was limited to actors’ ERPs,
in order to facilitate the evaluation of the various feature selection
techniques and classification algorithms and the comparisons
with the previous research exposed in [35].

2. Material and methods

2.1. Subjects’ and ERPs’ recording procedure

The ERPs data used in the present study were collected in
previous research [21]. The data were acquired from 16 healthy
volunteers. Participants were seated in front of a table facing an
experimenter, having in front of them, on the table, two joystick
devices positioned to the left and right of a LED stimulus device.
Participants had to perform an Eriksen flanker task. In this kind
of choice reaction tasks, used in cognitive psychology research, a
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