
MaRGEE: Move and Rotate Google Earth Elements

Mladen M. Dordevic 1, Steven J. Whitmeyer n

Geology and Environmental Science, James Madison University, Harrisonburg, VA 22807, USA

a r t i c l e i n f o

Article history:
Received 19 February 2015
Received in revised form
15 July 2015
Accepted 6 September 2015
Available online 12 September 2015

Keywords:
Google Earth
KML
JavaScript
Geospatial
Tectonics

a b s t r a c t

Google Earth is recognized as a highly effective visualization tool for geospatial information. However,
there remain serious limitations that have hindered its acceptance as a tool for research and education in
the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on
the Google Earth virtual globe. Here we present a new JavaScript web application to “Move and Rotate
Google Earth Elements” (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add
intermediate steps to a transposition, and batch process multiple transpositions. The transposition al-
gorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition
groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent
deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to fa-
cilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the
Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a
KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic re-
constructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and
small-scale geologic processes.

& 2015 Published by Elsevier Ltd.

1. Introduction

In the years since its debut in 2005, the Google Earth virtual
globe has become a highly effective visualization tool for geospa-
tial information (Butler, 2006; Bailey and Chen, 2011). The initial
wonder and awe of members of the general public at the ease with
which they could fly to any place on the globe and view detailed
imagery of the ground surface has been supplanted by its ubi-
quitous use as a geobrowser of Earth imagery and data. By in-
tegrating Keyhole MarkUp Language (KML), now an OpenGIS
scripting language, within the Google Earth platform the utility of
Google Earth was greatly expanded beyond just passive viewing of
the modern-day Earth surface (Ballagh et al., 2011). Geoscientists
and others have the means to display original data and models
within a user-friendly, 3D virtual globe interface. Introduction of
the TimeSpan feature further expanded the features of Google
Earth to allow geoscientists to incorporate the 4th dimension of
time within Google Earth visualizations. In many aspects, Google
Earth has become the preeminent way to display 4D geoscientific
and environmental information.

Unfortunately, there remain several limitations in Google Earth

that have restricted its full potential as a research and educational
tool. Many of these limitations have been previously documented
in publications that describe workaround solutions (De Paor and
Whitmeyer, 2011; Blenkinsop, 2012, Zhu et al., 2014b). Examples
include Screen Overlays that must be coded outside of the Google
Earth application (e.g. Whitmeyer, 2010; Dordevic, 2012), 3D
COLLADA models that can be positioned on the Google Earth ter-
rain, but must be created by an external application such as
SketchUp (De Paor and Pinan-Llamas, 2006; De Paor and Williams,
2006; Dordevic et al., 2010; De Paor and Whitmeyer, 2011; Mo-
chales and Blenkinsop, 2014), and an opaque ground surface that
makes displaying and visualizing subsurface data and models
challenging (De Paor et al., 2008; Whitmeyer and De Paor, 2008).

Perhaps the most significant limitation of Google Earth from a
process-focused science perspective is the inability to transpose
(translate, rotate) Google Earth elements, such as lines (paths),
polygons, or groups of placemarks. This limitation makes it ex-
tremely difficult to show dynamic natural processes, as the creator
of a visualization has to draft each incremental position of an
element individually. Our initial solution to this problem used a
command-line PERL script to load a KML file with geometrical
components that the visualization creator wanted to translate or
rotate (Whitmeyer and Patterson, 2013). Initially our application
focused on local or regional transformations, and therefore did not
address aerial distortions of polygons or line elements that would
occur when translating across multiple degrees of latitude (e.g. the
methodology of Zhu et al., 2014a). However, as the focus of our

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2015.09.004
0098-3004/& 2015 Published by Elsevier Ltd.

n Corresponding author. Fax: þ1 540 568 8058.
E-mail addresses: dordevmx@jmu.edu (M.M. Dordevic),

whitmesj@jmu.edu (S.J. Whitmeyer).
1 Now employed at the Incorporated Research Institutions of Seismology,

Washington D.C., USA.

Computers & Geosciences 85 (2015) 1–9

www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2015.09.004
http://dx.doi.org/10.1016/j.cageo.2015.09.004
http://dx.doi.org/10.1016/j.cageo.2015.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.09.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2015.09.004&domain=pdf
mailto:dordevmx@jmu.edu
mailto:whitmesj@jmu.edu
http://dx.doi.org/10.1016/j.cageo.2015.09.004


Google Earth visualizations expanded to include movements and
processes through geologic timescales (thousands to millions of
years) it became apparent that our transposition algorithm needed
to be based on spherical geometry to preserve the shapes and
spatial relationships of Google Earth geometry elements across
multiple degrees of latitude and longitude (e.g. De Paor, 1996).

Details of how geometry elements are represented in KML and
processed in Google Earth have been documented elsewhere
(Wernecke, 2009; Zhu et al., 2014a) and do not warrant reiteration
here. In the sections that follow we focus on relevant KML file
structures, the importance of using spherical geometry to trans-
pose Google Earth geometry elements, and the algorithms we use
to accomplish spherical transpositions. This is followed by a de-
scription of the JavaScript web application: “Move and Rotate
Google Earth Elements” (MaRGEE): http://geode.net/margee/. A
github link to code for the files used in the MaRGEE web appli-
cation and an example KML file that was produced using MaRGEE
and the methods described below are included in Appendix A.

1.1. KML structure

MaRGEE functions by loading a KML or standard KMZ (zipped
KML package) file that contains the Google Earth geometry ele-
ments (points, paths, polygons) to be transposed or edited (Fig. 1).
The primitive KML geometry types (Google, 2013 a; Fig. 2) that
MaRGEE can handle are KmlPoint, KmlLineString (path) and
KmlPolygon (polygon), as these proved to be most relevant in
global-scale transpositions of Google Earth elements.

Paths are rendered in Google Earth as segments of a great cir-
cle. However, polygons are rendered in Google Earth by connecting
individual coordinates, such that lines of constant bearing result in
visually ‘deformed' polygons near the poles (Fig. 3). By changing
the KmlAltitudeMode in the polygon style element to something

other than “Clamped…” polygons are rendered in the same
manner as Paths. The same effect can be achieved by changing the
polygon fill mode to “outline”: KmlPolyStyle.setFill(0).

Other geometry types (KmlModel, KmlGroundOverlay,
KmlMultiGeometry) were excluded from our implementation.
KmlModel is used to display COLLADA models in Google Earth. It is
anchored with a single coordinate (KmlLocation), scale (KmlScale)
and model orientation (KmlOrientation). KmlGroundOverlay is
positioned using KmlLatLonBox and is not particularly useful for
rotation as it is bounded by lines of constant bearing. KmlMulti-
Geometry could be useful, as it represents all of the above as a
collection of primitive geometries. However, it cannot be created
directly in the Google Earth application, which significantly di-
minishes its usability in creating polygons and other KML
elements.

MaRGEE can read and write to KML and KMZ filetypes (Google,
2013b). A KMZ file is a Zip archive that contains a KML document

Fig. 1. View of the initial MaRGEE screen after a KML file has been loaded. The file consists of three elements: a filled polygon named India, an outlined polygon named India
Outline, and a filled polygon named Sri Lanka. The India polygon is selected, and the India Outline and Sri Lanka polygons have been hidden from view.

Fig. 2. Schematic of geometry types in KML file structure.

M.M. Dordevic, S.J. Whitmeyer / Computers & Geosciences 85 (2015) 1–92



Download English Version:

https://daneshyari.com/en/article/10352358

Download Persian Version:

https://daneshyari.com/article/10352358

Daneshyari.com

https://daneshyari.com/en/article/10352358
https://daneshyari.com/article/10352358
https://daneshyari.com

