
Research paper

A fast two-step algorithm for invasion percolation with trapping

Yder Masson
Institut de Physique du Globe de Paris, 1 rue Jussieu, 75005, Paris, France

a r t i c l e i n f o

Article history:
Received 22 September 2015
Received in revised form
2 February 2016
Accepted 3 February 2016

Keywords:
Invasion percolation
Trapping
Cluster labeling
Algorithm
Hoshen Kopelman
Two phase flow

a b s t r a c t

I present a fast algorithm for modeling invasion percolation (IP) with trapping (TIP). IP is a numerical
algorithm that models quasi-static (i.e. slow) fluid invasion in porous media. Trapping occurs when the
invading fluid (that is injected) forms continuous surfaces surrounding patches of the displaced fluid
(that is assumed incompressible and originally saturates the invaded medium). In TIP, the invading fluid
is not allowed to enter the trapped patches. I demonstrate that TIP can be modeled in two steps: (1) Run
an IP simulation without trapping (NTIP). (2) Identify the sites that invaded trapped regions and remove
them from the chronological list of sites invaded in NTIP. Fast algorithms exist for solving NTIP. The focus
of this paper is to propose an efficient solution for step (2). I show that it can be solved using a disjoint
set data structure and going backward in time, i.e. by un-invading all sites invaded in NTIP in reverse
order. Time reversal of the invasion greatly reduces the computational complexity for the identification
of trapped sites as one only needs to investigate sites neighbor to the latest invaded/un-invaded site. This
differs from traditional approaches where trapping is performed in real time, i.e. as the IP simulation is
running, and where it is sometimes necessary to investigate the whole lattice to identify newly trapped
regions. With the proposed algorithm, the total computational time for the identification and the re-
moval of trapped sites goes as O(N), where N is the total number of sites in the lattice.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Invasion percolation (IP) is an algorithmic model introduced by
Wilkinson and Willemsen (1983) to model biphasic fluid migra-
tion in porous materials. IP considers the scenario of two im-
miscible fluids. The first fluid is slowly injected inside a random
porous medium and displaces the second fluid that originally sa-
turates the pore space. This process occurs naturally in various
contexts, for example, when oil, water or gas migrate through
reservoir rocks. In IP, the pore space is modeled as a lattice of sites
that corresponds to larger interstitial spaces or pores between
grains, connected by bonds, that represent smaller throats con-
necting neighboring pores. The invasion proceeds by invading the
sites one by one. As the invasion goes, it may happen that some
clusters formed by the defending fluid become completely sur-
rounded by the invading fluid, this is called trapping. There are
two IP model variants: invasion percolation without trapping
(NTIP), where trapped sites are allowed to be invaded, and, inva-
sion percolation with trapping (TIP), where the defending fluid is
assumed incompressible and sites belonging to trapped clusters
cannot be invaded. From an algorithmic point of view, trapping
brings additional complexity to the IP procedure as it requires
extra operations to search for trapped clusters. The focus of this

paper is to propose an efficient algorithm for identifying the
trapped sites in TIP.

Regardless of trapping, one often distinguishes between site IP
and bond IP that intend to model two different types of dis-
placement named drainage and imbibition (e.g. Lenormand and
Bories, 1980; Chandler et al., 1982). Site IP intends to model im-
bibition where a wetting fluid (e.g. water) is invading a medium
originally saturated by a non-wetting fluid (e.g. oil). Bond IP in-
tends to model the opposite situation called drainage where a
non-wetting fluid is invading a medium originally saturated by a
wetting fluid. In practice, IP models have mainly been used for
slow drainage in porous and fractured media, this is because the
use of the IP for imbibition is not well justifiable, due to additional
physical mechanisms (e.g., film flow and snap-off) which often
accompany imbibition and are not taken into account in IP. I refer
the reader to Løvoll et al. (2005) and Toussaint et al. (2005, 2012)
for extensive discussions of various invasion scenarios. From an
algorithmic point of view, there is no difference between bond IP
and site IP and they can be modeled using a unique IP algorithm
on appropriate lattices (e.g. Patzek et al., 2001). For the sake of
clarity, I only consider site IP in the present study.

The site TIP procedure (Wilkinson and Willemsen, 1983) con-
sists of the following steps:

1. Define a lattice of sites connected by bonds, injection sites (i.e.
sites at which the invading fluid is injected), sink sites (i.e. sites

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

http://dx.doi.org/10.1016/j.cageo.2016.02.003
0098-3004/& 2016 Elsevier Ltd. All rights reserved.

E-mail address: yder.masson@cal.berkeley.edu

Computers & Geosciences 90 (2016) 41–48

www.sciencedirect.com/science/journal/00983004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://dx.doi.org/10.1016/j.cageo.2016.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2016.02.003&domain=pdf
mailto:yder.masson@cal.berkeley.edu
http://dx.doi.org/10.1016/j.cageo.2016.02.003

at which the defending fluid is free to escape), and set all sites
to invadable.

2. To all sites in the lattice, assign an invasion potential (e.g.
Wilkinson, 1984; Meakin et al., 1992; Glass and Yarrington,
1996)

σ θ ρ= () − Δ (−)
()

P
a

g L z
2 cos

1i
c

i
i

where ai is the effective radius of site i, θc is the equilibrium
contact angle between the wetting fluid and the solid, ρΔ is the
density contrast between the two fluids, g is the acceleration of
gravity, L is the height of the system to be invaded, and zi is the
elevation of site i. Practically, the radii ai are chosen randomly
from a given probability distribution.

3. Invade the sites one by one until the invading fluid percolates,
i.e. repeat the following three steps until the invading fluid
reaches a sink site:

(a) Identify the trapped clusters formed by the defending fluid
that are not connected to a sink and set all sites belonging to
these clusters to un-invadable.

(b) Among all invadable sites, find the site that is neighbor to the
invading fluid and that has the maximum invasion potential.

(c) Invade that site.

The site NTIP procedure is similar to the TIP procedure except
that step 3(a) in the above sequence is not performed.
The NTIP problem can be solved efficiently using a binary tree

data structure (e.g. Knuth, 1998) that maintains an up-to-date list
of sites that neighbor the invader. This data structure permits us to
find the site with the largest invasion potential in ()O 1 operation
and to insert new neighbor sites in (())O nlog operations, where

≤n N is the number of active sites in the list (e.g. Schwarzer et al.,
1999; Sheppard et al., 1999; Masson and Pride, 2014). I refer to
Masson and Pride (2014) for a detailed implementation of NTIP
using a perfectly balanced binary tree that strictly guarantees

()O M Mlog execution time, where M is the number of sites in-
vaded at percolation time.

Algorithms for TIP can be constructed by modifying existing
fast algorithms that solve the NTIP problem. A classic approach is
to identify the trapped clusters formed by the defender at each
time step. The trapped sites are then flagged to prevent further
invasion (i.e. step 3(a) in the above procedure). This can be done
using cluster labeling algorithms such as the classic (Hoshen and
Kopelman, 1976) algorithm, or a similar but more generic disjoint-
set data structure (e.g. Knuth, 1998; Cormen et al., 2001). A nice
analysis of algorithms that label isolated clusters is given by Ba-
balievski (1998). Labeling clusters at each time step is however
highly inefficient because it requires to scan the entire lattice M
times which gives a computation time of O(MN) for the trapping
part of TIP, where N is the total number of sites in the lattice. A
better approach is to first investigate the neighbors of each newly
invaded site to check for trapping which is ruled out in most cases.
If trapping is possible, a different algorithm is used to update the
cluster labeling as necessary (e.g. Schwarzer et al., 1999; Sheppard
et al., 1999; Meakin, 1991). In this work, I propose an alternative
approach where clusters are labeled only once at the end of the IP
invasion.

The aim of this paper is to detail a comprehensive and com-
putationally efficient algorithm for solving the TIP problem. A
search through the recent literature (Chen et al., 2012; Yang et al.,
2013) shows that less efficient algorithms with execution time O
(MN) are still widely used, further, I found no study that provides
the reader with a detailed fast TIP algorithm that can easily be
turned into code. The present paper together with Masson and
Pride (2014) should allow the graduate student or people less fa-
miliar with IP to get started quickly with adequate algorithms. The

solution I propose for TIP is based on the simple observation that
trapping can be treated a posteriori through time-reversal of the
invasion sequence obtained in NTIP. Surprisingly, to my knowl-
edge, this simple and efficient approach has not been reported in
the literature. Numerical results show better performance than
previously proposed algorithms.

2. The proposed TIP algorithm

In this section, I first show that TIP can be solved by post-
processing the NTIP solution. Then, I detail an efficient two-steps
algorithm for solving TIP. Finally I analyze the performance of the
proposed algorithm.

2.1. Algorithm principle

Consider a NTIP sequence as illustrated in Fig. 1 and imagine a
site belonging to a trapped region is invaded, e.g. as in Fig. 1b. We
observe that the interface between the two fluids outside the
trapped region (i.e. which encloses the newly invaded site) is not
modified by this invasion. Therefore, this will not affect the way
sites will be invaded outside this trapped region, i.e. which one of
these sites will be invaded and in what order. In other words, the
sites invaded in NTIP are the same as those invaded in TIP plus
some extra sites belonging to trapped regions at invasion time.
Based on this observation, I formulate the following proposition:

Proposition 1. Given two IP simulations, a NTIP simulation SNT and
a TIP simulation ST, both performed using the exact same setup (i.e.
lattice, realization of invasion potentials, injection sites, sink sites, and
boundary conditions), let LT be the list of sites invaded in ST sorted by
increasing invasion time and LNT be the list of sites invaded in SNT
sorted by increasing invasion time. When removing the sites that
invaded trapped regions from LNT , we obtain LT.

It follows from Proposition 1 that the TIP problem can be de-
composed into two sub-problems that can be solved sequentially:
(1) Solve the NTIP problem. (2) Identify and remove the sites that
invaded trapped regions in NTIP.

One inefficient way to obtain the TIP invasion sequence
knowing the NTIP solution is to proceed as for traditional TIP. That
is, redo the invasion and, at each invasion step, check whether or
not the newly invaded site belongs to a trapped region. A simple
improvement to this procedure is to identify all clusters connected
to a sink at the end of NTIP. In this case, all sites connected to a
sink do not need to be re-investigated when searching for trapped
clusters. I now show that further improvement can be achieved
through time-reversal of the NTIP simulation.

Consider the situation where a new site is invaded in NTIP.
There are three and only three possible scenarios regarding the
evolution of the clusters formed by the defending fluid:

1. The number of clusters stays the same (see e.g. Fig. 1a).
2. One cluster of size one is suppressed (see e.g. Fig. 1d).
3. One cluster is split into multiple clusters (see e.g. Fig. 1e).

Now imagine the opposite situation where we go backward in
time and un-invade a site, there are again three possible scenarios:

1. The number of cluster stays the same (see e.g. Fig. 1a).
2. A new cluster of size one is created (see e.g. Fig. 1d).
3. Multiple clusters are merged together (see e.g. Fig. 1e).

Notice the important difference between the two situations (i.e.
going forward in time and going backward in time): on the one

Y. Masson / Computers & Geosciences 90 (2016) 41–4842

Download	English	Version:

https://daneshyari.com/en/article/10352385

Download	Persian	Version:

https://daneshyari.com/article/10352385

Daneshyari.com

https://daneshyari.com/en/article/10352385
https://daneshyari.com/article/10352385
https://daneshyari.com/

