
Computers & Geosciences 31 (2005) 780–785

The man who wasn’t there: The problem of
partially missing data

Stephen Henley�

Resources Computing International Ltd, 185 Starkholmes Road, Matlock DE4 5JA, UK

Received 8 September 2004; received in revised form 13 January 2005; accepted 13 January 2005

Abstract

Existing commercial database management systems offer little or no functionality to handle the complexity of

geoscience data—and other environmental science data—particularly in respect of missing and partially missing

(incomplete or imprecise) data items. The emphasis of both the relational theorists (Codd, Date, and others) and the

developers of database systems is on commercial applications where only rudimentary treatment of missing data is

required, in the form of NULLs, and even these are not handled properly by the SQL language.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Database; RDBMS; Missing data; Null; SQL; Logic; Relational; Fuzzy logic

Yesterday upon the stair,

I met a man who wasn’t there

He wasn’t there again today:

I wish that man would go away. – Children’s nonsense

rhyme

1. Introduction

Although one of the earliest relational database

management systems (G-EXEC—Jeffery and Gill,

1976a–c) was developed in the 1970s to support

applications in the geosciences, in recent years there

has been progressively more reliance on general-purpose

relational systems developed for ‘business’ users. This

has the unfortunate consequence that little or no

thought has been given to the complexities of managing

real scientific data, and the resulting mismatch causes

problems which have rarely been recognised despite the

potentially severe consequences for the integrity of

scientific databases.

2. Database management systems and data models

The closest that many geoscientists come (or want to

come) to database management systems (DBMS) is the

Microsoft Access that comes bundled with the Office

suite, or a packaged ODBC-compliant system sitting

underneath an applications software product. Yet

effective management of their geological data is vital

for all exploration and mining projects.

From the 1970s onwards, database management has

been and remains an intensely fought-over battlefield.

The original protagonists were hierarchical and network

DBMSs following international CODASYL standards,

and relational systems following (more or less) the

principles first articulated by Codd (1970). During

the 1980s the relational systems came to dominate

the marketplace, largely by default as the older

ARTICLE IN PRESS

www.elsevier.com/locate/cageo

0098-3004/$ - see front matter r 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2005.01.010

�Tel.: +44 629 581454; fax: +44 1629 581471.

E-mail address: stephen.henley@btconnect.com.

www.elsevier.com/locate/cageo


COBOL-based hierarchical systems became obsolete

with the mainframe computers which hosted them.

The most widely used database management systems,

such as Oracle, Access, mySQL, SQLserver, Paradox,

Ingres, and others, are all claimed to be relational.

Certainly they all use SQL (Structured Query Language)

which itself is often assumed to be an indicator of a

relational database system. Unfortunately, SQL itself

violates some of the relational principles, and fails to

support others, so this is not a good criterion.

3. The missing data problem

Every geologist knows the problem: there is an

incomplete data set—a gold assay has been missed out

by the laboratory, or there is a strange-looking co-ordinate

value, a stratigraphic interval cut out by an unconformity,

or a rock-type description that has been forgotten. If the

data must be stored and processed, something must be

done to indicate that these values are missing (whether

temporarily or for good). In the bad old (good old) days

each application program would have its own way of

dealing with missing data and its own requirement for

coding it. Quite often the solution consisted of inserting a

‘-99’ or some such value in place of the absent data item.

There are two big problems with this type of solution: first,

the difficulty of ensuring that the missing-data code could

not be confused with a legitimate data value, and second,

the certainty that different application programs would

require different missing-data codes.

With the development of database management

systems, the handling of missing-data codes became

more systematic. For example, in G-EXEC (a relational

data handling system for geoscience developed in the

1970s) each data file (relational table) contained a data

description (sub-schema) in which a missing-data code

was defined for each column. This missing-data code

was carried with the data wherever it was copied, and

was recognised and acted upon by all applications

programs within G-EXEC. For new columns created by

G-EXEC application programs, a missing-data code

was set up that was very unlikely to be a valid data

value—the highest negative real number which could be

represented in the computer concerned. This was

perfectly adequate as long as the data were not

transferred to a different computer which allowed a

different range of real numbers. A similar, though

simplified, approach was adopted in developing Data-

mine (a relational database/applications system for the

mining industry, developed in the 1980s—Henley and

Stokes, 1983; Henley, 1992), in that �1.0� 1030 was

adopted as a universal numeric missing-data value, while

a blank string was used for a character data null value.

In commercial database management systems, the

question of nulls (shorthand for missing data values)

became a central issue. In most early systems, and in many

database systems to the present day, a hard-coded null-

value solution was adopted—most commonly an empty

character string. As Codd, the originator of the relational

data model, pointed out, however, any column in any

table is drawn from a ‘domain’ or extended data type

which could be defined to include any ranges of values—

including any special value which is chosen to be the

‘null’—and so no ‘null’ representation can be assumed not

to be identical with some real data value. Although his

arguments were made in the context of the relational

model, they indeed apply equally to any other type of

database management system.

Conventional logic allows for just two truth values,

true and false, leaving no room for uncertainty and no

provision for missing information. It was recognised

very early that this was inadequate for database

management systems, and the ‘null’ concept was

introduced. SQL provides a three-valued logic (3VL)

solution with most logical operations involving nulls

leading to a new logic value unknown. Unfortunately, as

Date (1995, Chapter 9) demonstrates, standard SQL

offers incomplete support even for this simple 3VL

model and as a result can lead to serious database

integrity problems. His preferred solution is to use only

2VL and a ‘default value’ approach: the database

designer or application developer is responsible for

defining one or more special values in each column, each

with a set of operations that are allowed (and which

must be coded by the designer or developer).

Codd (1990, pp. 203–204) argues convincingly that it

is an abdication of the responsibility of the database

management system to maintain integrity, if such a

crucial role is left to the user or the application to define

on a case-by-case basis. One solution to this problem,

which he proposed, lies in attaching an extra one-byte

column to each data column. This extra column would

contain a flag or ‘mark’ for each missing data value in

the column, and the data item in the column would

simply be ignored whenever a mark was encountered.

This is the method which was adopted in DB2 and some

other IBM database management systems. It has the

merit that it guarantees there cannot be any confusion

between nulls and any legitimate values.

If nulls are used, then however they are coded, both

Codd and Date assume that they imply a system of

three-valued logic: when comparing values (for example

in retrieval or table–join operations) there is either a

match (True) or a mismatch (False)—or a ‘Maybe’

(truth value ‘unknown’) when one of the operands is a

missing value. In his second version of the relational

database model, Codd (1990) takes the argument one

step further. He identifies two kinds of missing data. The

ordinary ‘missing but applicable’ value—which might be

supplied later (the missing gold assay)—is simply

unknown, while a much stronger form of ‘missing and

ARTICLE IN PRESS
S. Henley / Computers & Geosciences 31 (2005) 780–785 781



Download English Version:

https://daneshyari.com/en/article/10352563

Download Persian Version:

https://daneshyari.com/article/10352563

Daneshyari.com

https://daneshyari.com/en/article/10352563
https://daneshyari.com/article/10352563
https://daneshyari.com

