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Abstract

An efficient algorithm has been developed for 1D resistivity inversion problem using both first- and second-order

derivatives, which are computed analytically. The second-order derivative matrix, which is not used in the OCCAM’s

inversion, has been incorporated into the algorithm employing analytical expressions. Computation of complicated

second-order derivatives in each iteration is circumvented by a new algorithm. These modifications result in stable

convergence of the OCCAM’s inversion and in general, better misfit can be achieved specially for smoothing parameter,

mo1: The modified inversion algorithm, coded in MATLAB was tested using two synthetic Schlumberger resistivity

sounding examples. Its application has been illustrated with field data from south India.
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1. Introduction

The OCCAM’s inversion algorithm was first intro-

duced by Constable et al. (1987) to find the smoothest

model that fits the magnetotelluric (MT) and Schlum-

berger geoelectric sounding data. The method gained

popularity in inversion studies and was applied to many

investigations (LaBrecque et al., 1996; Siripunvaraporn

and Egbert, 1996; Qian et al., 1997). In this scheme a

highly nonlinear problem is formulated in a linear

fashion, which obviates the computation of second-

order derivatives that carry useful curvature information

of the objective function.

In this paper the 1D OCCAM’s algorithm has been

improved by inclusion of second-order derivative matrix

known as Hessian that is computed analytically. This

leads to a quadratic equation approximation of the

objective function. The modified algorithm has been

tested on synthetic and real field resistivity sounding

data. It is found that the modified algorithm is more

stable and convergent than OCCAM’s inversion.

The computation of second-order derivatives in

Schlumberger resistivity sounding involves cumbersome

piece of algebra and therefore these derivatives are

computed numerically using finite difference schemes.

This introduces many unacceptable errors and requires

more computational time, which results in inaccurate

curvature information that decides the step of descent

where as computation of the derivatives analytically
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solves the problem. The analytic approach based on

recursive formulation provides faster computation of the

derivatives.

2. Formulation of the problem

The nonlinear resistivity inversion relates observed

data and model parameters by equation

Y ¼ gðxÞ þ n; (1)

where Y ¼ ðy1; . . . ; yN ; Þ is a vector representing ob-

servations at different half-electrode separations in

Schlumberger sounding, N is number of half-electrode

separations, gðxÞ ¼ ðg1ðxÞ; . . . ; gN ðxÞÞ represents pre-

dicted data at different half-electrode separations, and

n is the measurement noise.

Various schemes to treat this non-linear problem are

described in detail by Dimri (1992). Terminology used

here closely follows Chernoguz (1995) with some

differences arising due to Constable et al. (1987).

Following Constable et al. (1987) the inverse problem

is posed as a constrained optimization problem, set forth

to minimize misfit X ¼ jjWY� WgðxÞjj; subject to the

constraint that roughness R ¼ jj@xjj is also minimized.

This can be converted to an unconstrained problem by

the use of Lagrange parameter m as follows:

U ¼
1

2
jj@xjj2 þ

1

2m
fðW DYðxÞÞTðW DYðxÞ � w2�Þg; (2)

where @ is N 
 N matrix defined by Constable et al.

(1987) as

@ ¼

0 0 ::: ::: 0

�1 1 ::: ::: 0

0 �1 1 ::: 0

: : : : :

: : : : :

0 0 ::: �1 1

0
BBBBBBBB@

1
CCCCCCCCA
:

W is weighting matrix, w� is acceptable misfit value and,
m is a Lagrange parameter used to optimize the

constrained functional ‘U’ (Smith, 1974) and DYðxÞ ¼

WY� WgðxÞ: If we expand the functional in Taylor’s

series at x ¼ xk (say) we get

Uðxk þ d; m;YÞ ¼ Uðxk; m;YÞ þ JT
k dþ

1

2
dTQkd;

where

Jk ¼ rxU ¼ @T@x �
1

m
ðWGðxÞÞTW DYðxÞ

and

Qk ¼ r2xU ¼ @T@�
1

m
rxfðWGðxÞÞTW DYðxÞg:

Using the identity

rxfWGðxÞÞTW DYðxÞg ¼ ðWHðxÞÞTW DYðxÞ

� ðWGðxÞÞTWGðxÞ

the Qk becomes

Qk ¼ r2xU

¼ @T@�
1

m
fðWGðxÞÞTWGðxÞ

� ðWHðxÞÞTW DYðxÞg

where GðxÞ is Jacobian of gðxÞ and HðxÞ is Hessian of

gðxÞ:
If we define

ðWHÞ
TW DY ¼

X
j

WHjW DYj as q;

where in Hj is Hessian of gðxÞ evaluated at jth data point

and DYj ¼ yj � gjðxÞ; q is the nonlinear part of the

Hessian, then minimization of the functional (2) using

Newton’s method for ith iteration step di yields

di ¼ � @T@þ m�1fWGðxÞTWGðxÞ � qg
� 	�1


 @T@x � m�1WGðxÞTW DYðxÞ
� 	

x¼xi
: ð3Þ

Thus xiþ1 ¼ xi þ di forms the iterative basis for the

optimization of functional (2). Eq. (3) gives generalized

OCCAM’s correction steps. By setting q as a null

matrix, the equation gives the model correction of the

popular OCCAM’s inversion algorithm. The OCCAM’s

optimization in Eq. (3) can be viewed as two sub-

algorithms, where primary optimizes the functional U

for different values of x and m and secondary optimizes

only misfit function. The difficulty may arise when the

primary suggests corrections in the direction of decreas-

ing U and secondary moves in search of decreasing

misfit without regarding the roughness. Thus due to lack

of curvature information in the OCCAM’s inversion,

secondary algorithm becomes blind in the direction of

true minimum of w2; when the requirement of the

primary algorithm to reduce U is overpowering.

Another problem in OCCAM’s inversion is the choice

of Lagrange’s parameter m. If we take mo1 for

minimization of functional used in standard OCCAM’s

inversion, the algorithm tends to be blind to minimize

misfit function in the absence of the curvature informa-

tion. Hence, there is need to incorporate curvature

information in terms of Hessian matrix. If we take mp1

in Eq. (3) the nonlinear part carrying curvature

information, will contribute to the convergence. In our

work we include the curvature information in the

OCCAM’s model correction steps. From Newton–-

Gauss method we have,

xiþ1 ¼ xi þ aidi; (4)
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