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a b s t r a c t

A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving

3-D acoustic wave problems based on the Burton–Miller boundary integral equation (BIE) formulation.

Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant

elements, which are shown to be more accurate, stable and efficient than those using direct numerical

integration. Numerical examples show that using the analytical moments can reduce the CPU time by a

lot as compared with that using the direct numerical integration. The percentage of CPU time reduction

largely depends on the proportion of the time used for moments calculation to the overall solution

time. Several examples are studied to investigate the effectiveness and efficiency of the developed

diagonal fast multipole BEM as compared with earlier p3 fast multipole method BEM, including a

scattering problem of a dolphin modeled with 404,422 boundary elements and a radiation problem of a

train wheel track modeled with 257,972 elements. These realistic, large-scale BEM models clearly

demonstrate the effectiveness, efficiency and potential of the developed diagonal form fast multipole

BEM for solving large-scale acoustic wave problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) based on the boundary
integral equation (BIE) formulation can be used to analyze
acoustic wave problems effectively, such as in noise prediction
for automobiles [1], high speed trains [2], airplanes [3], and
underwater structures [4]. Several of the earlier work laid the
foundation for applying the BIE/BEM to solve acoustic problems
[5–10]. Especially, the work by Burton and Miller in Ref. [7] has
been regarded as a classical one, which provides an elegant way
to overcome the so called fictitious eigenfrequency difficulties
existing in the conventional BIE for exterior acoustic wave
problems [11,12].

In the last decade, the focus of the research has been on
developing fast solution methods for efficiently solving large-
scale BEM models for acoustic problems. The fast multipole
method (FMM) is one of the most promising fast solution
methods for the BEM. FMM was first pioneered by Rokhlin [13]
and further developed by Greengard and Rokhlin [14] for fast
simulation of large particle fields in physics. The FMM can
improve the matrix-vector multiplication dramatically from
O(N2) to O(N) or O(N log N) with N being the number of degrees

of freedom. Later on, a diagonal form FMM for Helmholtz
problems was proposed by Rokhlin [15] as well. Since then, many
research works have been published to improve and extend the
applicability of the FMM for Helmholtz equations. Epton and
Dembart [16] presented a concise summary of multipole transla-
tions for 3-D Helmholtz equations. Rahola [17] gave an error
analysis of the FMM by considering both truncation error of the
kernel expansion and the errors from the use of numerical
integration in diagonal translation theorem. Darve [18] provided
a rigorous mathematical approach on the estimation of the
truncation error. Besides the above error considerations, Koc
et al. [19] also analyzed the interpolation error in multilevel
FMM. To accelerate the low frequency FMM, Greengard et al. [20]
used the combination of evanescent and propagate mode to
reduce the computation cost. Darve and Have [21] proposed a
stable plane wave expansion, which uses the singular-value
decomposition method to represent the evanescent kernel for
the low frequency FMM. Gumerov and Duraiswami [22,23]
extended the recurrence relations reported in Chew’s paper [24]
to develop a general recursive method for obtaining the transla-
tion matrices, the resulting approach is generally termed as p3

FMM for solving the Helmholtz equation (with p being the order
of the expansion). Adaptive algorithms for the FMM were also
developed to speed up the solutions for 3-D full- and half-space
acoustic problems [25–27]. The fast multipole BEM for solving
structural-acoustic interaction problems was developed by
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Gaul and Fisher [28,29]. Hybrid FMMs were developed recently by
Cheng et al. [30] and Gumerov and Duraiswami [31], which are
stable for a wide range of frequencies. The former switches to
different representations at low and high frequencies, while the
latter is based on a rotation – coaxial translation – back rotation
scheme. More information about the fast multipole BEM in
general can be found in a review article [32], a tutorial [33], and
the first textbook [34].

A new diagonal fast multipole BEM for solving 3-D Helmholtz
equation with analytical integration of the moments is presented
in this paper. The BEM is based on the Burton–Miller’s BIE
formulation [7], which has no fictitious eigenfrequency difficul-
ties in solving exterior acoustic problems. The implementation of
the diagonal FMM is also based on the adaptive fast multipole
BEM given in Ref. [25] for 3-D full-space acoustic problems, in
Ref. [26] for 3-D half-space acoustic problems, and in Ref. [27]
for a new definition of the interaction list. The FMM used in
Refs. [25–27] is valid for all frequencies, but is less efficient than
the diagonal form FMM at high frequencies (e.g., with the
nondimensional wavenumber ka above 300), since the translation
complexity is at best O(p3) in Refs. [25–27] (with p being the
expansion order at each tree level). The developed diagonal fast
multipole BEM with the analytical integration of the moments is a
significant improvement of the above mentioned fast multipole
BEM, which can fill the gap in the analysis of high-frequency
acoustic problems.

The rest of the paper is organized as follows. First the BIE
formulation is reviewed in Section 2. The diagonal form FMM is
presented in Section 3. Then, the fast multipole BEM algorithm is
described in Section 4. The analytical moment formulation for the
diagonal FMM is presented in Section 5. In Section 6, several
numerical examples are given to demonstrate the capability of
the proposed diagonal form FMM in modeling large-scale acoustic
problems. Section 7 concludes this paper.

2. Boundary integral equations

The governing equation in the frequency domain of time-
harmonic acoustic waves in a homogeneous isotropic acoustic
medium E is described by the following Helmholtz equation:

r2jðxÞþk2jðxÞ ¼ 0, 8xAE, ð1Þ

where j(x) is the sound pressure at point x, k is the wave number
defined by k¼o/c, with o being the angular frequency and c the
sound speed in medium E. Using Green’s second identity, the
solution of Eq. (1) can be expressed by an integral representation:

jðxÞ ¼
Z

S
Gðx,yÞqðyÞ�

@Gðx,yÞ

@nðyÞ
jðyÞ

� �
dSðyÞþjIðxÞ, 8xAE, ð2Þ

where x is the source point and y is the field point on boundary S,
qðyÞ is defined as q(y)¼@j(y)/@n(y) where the unit normal vector
n(y) on boundary S is defined to point outwards from E. Incident
wave jI(x) will not be presented for radiation problems. In this
paper, the time convention adopted is using the factor e� iot,
correspondingly, the free-space Green’s function G for 3-D pro-
blems is given by

Gðx,yÞ ¼
eikr

4pr
with r¼ 9x�y9: ð3Þ

Letting point x approach the boundary leads to the following
conventional boundary integral equation (CBIE):

cðxÞjðxÞ ¼
Z

S
Gðx,yÞqðyÞ�

@Gðx,yÞ

@nðyÞ
jðyÞ

� �
dSðyÞþjIðxÞ, 8xAS, ð4Þ

where constant c(x)¼1/2 if S is smooth around point x. There is a
defect with Eq. (4) concerning the non-uniqueness of the solution

of an exterior acoustic problem at the eigenfrequency associated
with the corresponding interior problem. To deal with the non-
uniqueness difficulties, Burton and Miller [7] proposed a method
by combining the CBIE and the normal derivative of the CBIE.
Taking the derivative of integral representation Eq. (2) with
respect to the normal at the field point x and also letting point
x approach the boundary lead to the following hypersingular
boundary integral equation (HBIE):

cðxÞqðxÞ ¼

Z
S

@Gðx,yÞ

@nðxÞ
qðyÞ�

@2Gðx,yÞ

@nðyÞ@nðxÞ
jðyÞ

" #
dSðyÞþqIðxÞ, 8xAE,

ð5Þ

where qIðxÞ ¼ @jIðxÞ=@nðxÞ. For an exterior problem, Eqs. (4) and
(5) have a different set of fictitious frequencies at which unique
solutions for the exterior problem cannot be obtained. However, a
linear combination of Eqs. (4) and (5) will always have unique
solutions [7]. That is, the following linear combination of
Eqs. (4) and (5) (CHBIE) yields unique solutions at all frequencies:

b
Z

S

@2Gðx,yÞ

@nðxÞ@nðyÞ
jðyÞdSðyÞþ

Z
S

@Gðx,yÞ

@nðyÞ
jðyÞdSðyÞþcðxÞjðxÞ�jIðxÞ

¼ b qIðxÞ�cðxÞqðxÞþ
Z

S

@Gðx,yÞ

@nðxÞ
qðyÞdSðyÞ

� �
þ

Z
S

Gðx,yÞqðyÞdSðyÞ,

ð6Þ

where b is a coupling constant that must be a complex number
and can be chosen, for example, as i/k. This CHBIE formulation is
referred to as the Burton–Miller formulation.The acoustic pro-
blem considered in this paper is to solve Eq. (6) with the fast
multipole BEM under given boundary conditions.

3. Diagonal form fast multipole method

The FMM is employed to solve the Burton–Miller BIE, or CHBIE
(6), for which iterative solver GMRES will be used. Two earlier
versions of the FMM are available in the literature. One is based
on a multipole expansion of the kernel, named low frequency
method, and another based on a plane wave expansion of the
kernel, referred as the diagonal form method. Both of them have
their drawbacks. It is costly and sometimes not applicable to
perform low frequency fast multipole BEM in the high frequency
regime. On the other hand, due to the divergence of the transla-
tions when the size of the clusters becomes very small compared
with the wavelength and round-off errors of the translations, the
diagonal form is unstable when it is used in the low frequency
range. Despite their limitations, those methods have been proved
to be very successful in their suitable frequency ranges.

The diagonal form FMM is based on a plane wave expansion of
the kernel, which can be described by the following expansion [17]:

Gðx,yÞ �
XNl

n ¼ 0

ik

8p
on

2Nlþ1

X2Nl

m ¼ 0

Im
n ðk,x,xcÞT

m
n ðk,xc ,ycÞO

m
n ðk,yc ,yÞ, ð7Þ

for 9x�xc9o9y�xc9 and 9y�yc9o9x�yc9, where xc is an expansion
point near x and yc is that near y, Nl is the truncation number of the
multipole expansion. The inner, translation and outer functions in
Eq. (7) are defined by

Im
n ðk,x,xcÞ ¼ eikðx�xc Þ�ŝnm , ð8Þ

Tm
n ðk,xc ,ycÞ ¼

XNl

l ¼ 0

ilð2lþ1Þhð1Þl ðkuÞPlðû�ŝnmÞ, ð9Þ

Om
n ðk,yc ,yÞ ¼ eikðyc�yÞ�ŝnm , ð10Þ

respectively, where u¼9xc�yc9 and û¼ ðxc�ycÞ=u, Pl is lth order
Legendre function, ŝnm ¼ ðsinyn cosjm,sinyn sinjm,cosynÞ in which
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