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a b s t r a c t

Only very recently, Sayas [The validity of Johnson–Nédélec’s BEM-FEM coupling on polygonal

interfaces. SIAM J Numer Anal 2009;47:3451–63] proved that the Johnson–Nédélec one-equation

approach from [On the coupling of boundary integral and finite element methods. Math Comput

1980;35:1063–79] provides a stable coupling of finite element method (FEM) and boundary element

method (BEM). In our work, we now adapt the analytical results for different a posteriori error

estimates developed for the symmetric FEM–BEM coupling to the Johnson–Nédélec coupling. More

precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and

different versions of (h�h/2)-based error estimators. In numerical experiments, we use these

estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The FEM–BEM coupling is often used for interface problems in
unbounded domains, where, e.g. non-linearities are present in a
bounded domain and the material is isotropic in the exterior,
cf. [22,24,36,34]. The symmetric FEM–BEM coupling was pro-
posed and analyzed by Costabel [22] and attracted most attention
in the mathematical literature. In engineering, however, more
often the coupling procedure proposed by Johnson and Nédélec
[37] is used since it only involves two integral operators instead
of four. Only very recently, Sayas [46] proved that the Johnson–
Nédélec coupling is well-posed even on polygonal domains,
whereas numerical evidence of this was already known for many
years, cf. e.g. [23].

To the best of our knowledge, the numerical analysis of a
posteriori FEM–BEM error estimators has only been derived for
the symmetric coupling. Most of the results follow the concept of
two-level error estimation introduced in [42], see also the recent
work [39] and the references therein. Other approaches include
residual-based error estimators which have first been studied in
[20], and recently also (h�h/2)-based error estimators [5].

In this work, we transfer these three classes of a posteriori
error estimators from the symmetric coupling to the Johnson–
Nédélec coupling. As model problem serves, for the ease of

presentation, the interface problem for the Laplacian in two
dimensions with an inhomogeneous volume force in the interior.
We then formulate adaptive mesh-refining algorithms for each of
these three approaches. In numerical experiments, we finally
compare the effectiveness.

The detailed outline of this work reads as follows: In Section
2.1, we state our model problem and fix the notation of the
integral operators involved. Section 2.2 introduces the Galerkin
discretization and sketches the result of Sayas [46]. For some
implementational reasons, we also discretize the given boundary
data to which integral operators are applied. This allows to work
with discrete integral operators, i.e. matrices, in the implementa-
tion and leads to some perturbed Galerkin formulation given in
Section 2.3.

Section 3 is the heart of this work and contains the a posteriori
error analysis. First, we collect the necessary notation in Sections
3.1 and 3.2. The a posteriori error control of the approximation
error for the boundary data is discussed in Section 3.3. In Section
3.4, we study the residual error estimator R‘ from [20]. In Section
3.5, we recall the (h�h/2)-error estimator m‘ from [5] and discuss
the so-called saturation assumption, whereas Section 3.6 is con-
cerned with the two-level error estimator t‘ from [42]. With
certain modifications of the analysis from [5,20,42], we transfer
these error estimators from the symmetric coupling to the
Johnson–Nédélec coupling and can formulate and prove the
according results. However, we stress that, first, our version of R‘
is improved in the sense that it involves volume oscillations
instead of the volume residual terms and, second, we also prove
global equivalence m‘Ct‘ of (h�h/2)- and two-level error estima-
tor. Finally, a short Section 3.7 provides local relations of t‘ and R‘.

Section 4 considers an experiment from the literature for
which uniform and adaptive mesh-refinement are compared with
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respect to empirical convergence rate and computational time.
Finally, we conclude our work in Section 5 with an overview on
the analytical and numerical results of this paper. Moreover, we
state possible generalizations of our results for 3D problems and
pose some questions for further research.

2. Johnson–Nédélec coupling

2.1. Model problem

We consider the linear interface problem

�Duint ¼ f in Oint :¼ O,

�Duext ¼ 0 in Oext :¼ R2
\O,

uint�uext ¼ u0 on G,

@nuint�@nuext ¼f0 on G,

uextðxÞ ¼Oð9x9�1
Þ as 9x9-1:

8>>>>>>><
>>>>>>>:

ð1Þ

Here, O is a bounded Lipschitz domain in R2 with boundary G :¼ @O
and exterior unit normal vector n. The given data satisfy f AL2ðOÞ,
u0AH1=2ðGÞ, and f0AH�1=2ðGÞ. The space H1=2ðGÞ is precisely the
space of all traces of functions from H1ðOÞ, and H�1=2ðGÞ is the dual
of H1=2ðGÞ with respect to the extended L2ðGÞ-scalar product. To
guarantee the solvability of (1), we need the data to satisfy
/f0,1SGþ/f ,1SO ¼ 0. As usual, (1) is understood in the weak
sense, and the sought solutions satisfy uintAH1ðOÞ and uextA
H1
‘ocðO

ext
Þ¼fv : Oext-R : 8K �Oext compact vAH1ðKÞg with ruextA

L2ðOext
Þ.

Problem (1) is equivalently stated via the Johnson–
Nédélec FEM–BEM coupling proposed in [37]: Find u :¼
ðu,fÞAH :¼ H1ðOint

Þ � H�1=2ðGÞ such that

/ru,rvSO�/f,vSG ¼/f ,vSOþ/f0,vSG for all vAH1ðOint
Þ,

/c, 1
2�K
� �

uþVfSG ¼/c,ð12�KÞu0SG for all cAH�1=2ðGÞ: ð2Þ

Here, V denotes the simple-layer potential and K denotes the
double-layer potential. With

GðzÞ :¼ �
1

2p log9z9 for zAR2
\f0g ð3Þ

the fundamental solution of the 2D Laplacian, these integral
operators formally read for xAG as follows:

ðVcÞðxÞ ¼
Z
G

Gðx�yÞcðyÞ dGðyÞ, ð4Þ

ðKvÞðxÞ ¼

Z
G
@nðyÞGðx�yÞvðyÞ dGðyÞ: ð5Þ

By continuous extension, these definitions provide linear bound-
ary integral operators VALðH�1=2ðGÞ;H1=2ðGÞÞ and KALðH1=2

ðGÞ;H1=2ðGÞÞ. By scaling of O, we may assume that diamðOÞo1
to ensure the uniform ellipticity of V, i.e.

JcJ2
H�1=2ðGÞt/c,VcSG for all cAH�1=2ðGÞ:

In particular, /f,cSV :¼ /f,VcSG is a scalar product, and

JcJ2
V :¼ /c,VcSG for cAH�1=2ðGÞ

defines an equivalent norm on H�1=2ðGÞ. The reader is referred to
e.g. [41] for proofs and further details on these integral operators.
The link between (1) and (2) is provided by u¼ uint and f¼ @nuext,
and uext is then given by the third Green’s formula

uextðxÞ ¼ ~Kðu�u0ÞðxÞ� ~VfðxÞ for xAOext, ð6Þ

where the potentials ~V and ~K formally denote the operators V

and K, but are now evaluated in Oext instead of G. Note carefully
that we do not use a notational difference for the function

uAH1ðOÞ and its trace uAH1=2ðGÞ, for which we compute the
boundary integral ð12�KÞu in (2).

We stress that the second equation of the Johnson–Nédélec
FEM–BEM coupling (2) is the same as for the mathematically
well-studied symmetric coupling. It has already been proved in
[37] that problem (2) is well-posed on the continuous level, i.e. it
admits a unique solution u¼ ðu,fÞAH.

2.2. Galerkin discretization

Let T ‘ be a regular triangulation of O into triangles TjAT ‘ and
EG‘ a partition of the coupling boundary G into piecewise affine
line segments EjAEG‘ . Throughout, the index ‘AN0 indicates the
current step of the adaptive loop considered below. We use a
conforming discretization with continuous and T ‘-piecewise
affine finite elements in O and EG‘ -piecewise constants on G, i.e.
the discrete spaces read

X ‘ :¼ S1
ðT ‘Þ � P0ðEG‘ Þ �H1ðOÞ � H�1=2ðGÞ ¼H: ð7Þ

We stress that our analysis does not enforce any coupling of EG‘
and T ‘ . However, for the ease of presentation and implementa-
tion, we will assume throughout that the boundary mesh
EG‘ ¼ T ‘9G is obtained by restriction of the triangulation T ‘ to
the boundary G.

The Galerkin formulation of (2) then reads as follows: Find U%

‘ :
¼ ðU%

‘ ,F%

‘ ÞAX ‘ such that

/rU%

‘ ,rV‘SO�/F
%

‘ ,V‘SG ¼/f ,V‘SOþ/f0,V‘SG,

/C‘ ,ð12 �KÞU%

‘ þVF%

‘SG ¼/C‘ ,ð12�KÞu0SG ð8Þ

for all V‘ :¼ ðV‘ ,C‘ÞAX ‘. Only very recently [46, Theorem 2], it has
been proven that the discrete formulation (8) is well-posed and
admits a unique Galerkin solution U%

‘ AX ‘. We stress that the
following result applies, in particular, also to the continuous
formulation (2) and provides an alternate proof for the existence
and uniqueness of a solution of the Johnson–Nédélec FEM–BEM
coupling.

Proposition 1 (Sayas [46]). Suppose that X‘ is a closed subspace of

H1ðOÞ and Y‘ is a closed subspace of H�1=2ðGÞ which satisfy

1AX‘ as well as 1AY‘ , ð9Þ

i.e. the discrete spaces contain the constant functions. With

X ‘ :¼ X‘ � Y‘ , the linear operator H : X ‘-Xn

‘

ðHU‘ÞðV‘Þ :¼ /rU‘ ,rV‘SO�/F‘ ,V‘SG

þ/C‘ ,ð12�KÞU‘þVF‘SG ð10Þ

for U‘ ¼ ðU‘ ,F‘Þ, V‘ ¼ ðV‘ ,C‘ÞAX ‘ defines an isomorphism, where

the bounds of the operator norms JHJ and JH�1J depend only on O,
but not on the chosen spaces X‘ and Y‘. In particular, the variational

form (8) admits a unique solution U%

‘ AX ‘. Moreover, there holds the

Céa-type quasi-optimality

:9u�U%

‘ :9rCopt min
V‘ AX ‘

:9u�V‘:9 ð11Þ

with :9v:92
:¼ JvJ2

H1ðOÞ þJcJ
2
V for v¼ ðv,cÞAH, and the constant

Copt40 depends only on O, but not on X ‘ or the given data f, f0,
and u0.

2.3. Perturbed Galerkin discretization

The right-hand side of (8) involves the evaluation of Ku0,
which can be computed by methods proposed in [19,44,45]. In
this work, we will follow another approach. We propose to
approximate at least the given trace data u0AH1=2ðGÞ by appro-
priate discrete functions. One reason for this is that so-called fast

methods for boundary integral operators usually deal with discrete
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