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Abstract

A new subregion boundary element technique based on the domain decomposition method is presented in this paper. This technique is

applicable to the stress analysis of multi-region elastic media, such as layered-materials. The technique is more efficient than traditional methods

because it significantly reduces the size of the final matrix. This is advantageous when a large number of elements need to be used, such as in crack

analysis. Also, as the system of equations for each subregion is solved independently, parallel computing can be utilized. Further, if the boundary

conditions are changed the only equations required to be recalculated are the ones related to the regions where the changes occur. This is very

useful for cases where crack extension is modelled with new boundary elements or where crack faces come to contact. Numerical examples are

presented to demonstrate the accuracy and efficiency of the method.
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1. Introduction

Composite materials are increasingly used in various

engineering structures, such as in the aerospace and automotive

industries. One of the advantages of these materials is their

ability to be tailored for individual applications. The use of

composites could be potentially limited by the lack of efficient

methods to evaluate the strength and life expectation of

composite structures. While defects or micro-cracks are

unavoidable, they do have significant influence on the load

transfer behaviour within the composite. Due to the fact that

composite materials are made of regions or zones with different

material properties, it is not always possible to utilise the

general method for homogenous materials. Therefore, it is

crucial to develop accurate and efficient techniques for

numerical analysis of such materials, in case of fracture

mechanics analysis, calculating the stress intensity factor in

layered materials with cracks.

A wide variety of analytical and numerical methods have

been used to solve the fracture problems of layered materials

[1–6]. If a straightforward analytical solution is not possible,

numerical procedures must be used. The finite element method

(FEM) is one of the most popular technique to analyse fracture

problems in composite materials. The interior points have mesh

connectivity to the boundary points and extensive remeshing is

required for crack propagation problems. However, FEM

remeshing for each crack length tends to be time consuming. In

general, the boundary element method (BEM) together with a

subregion technique is widely considered to be a very accurate

numerical tool for the analysis of problems where the materials

consist of several homogeneous zones [7,8]. All the boundaries

of the body have to be discretised, including internal

boundaries that separate homogeneous zones. The BEM

equations, constructed from all homogeneous zones combined

with the interface traction and displacement continuity

conditions, produce a global matrix system. The numerical

solution of this matrix system is the most time consuming step

of the numerical method, and hence can be the bottleneck for

the method being applied to problems that require a large

number of elements.

Kita and Kamiya [9] presented a special method for the

subregion boundary element analysis to overcome this

disadvantage. The linear system for each subregion is

transformed into equations similar to the stiffness equations

of the FEM, and then the global matrix equation is constructed

by superposition of these equations for each subregion. The

matrix equation for each subregion is derived using the

algorithm in Brebbia and Georgiou [10]. This algorithm can be

applied easily to objects divided into subregions. The interface
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traction components are not obtained in the resulting matrix

system, but can be calculated from the equations for the

subregions. The technique has the advantage that the global

coefficient matrix can be constructed easily and a smaller

system of algebraic equations is obtained. This method is more

effective for objects with multiple internal boundaries.

However, a relatively large global coefficient matrix is still

needed.

The most computationally intensive part of these numerical

methods is the solution of large linear systems. Furthermore,

for Kita and Kamiya’s method, in order to deduce the global

matrix system a matrix inversion for each subregion is

required, which further increases computation time. The

number of numerical operations required for solving a system

of n linear equations and that in finding the inverse of a n!n

matrix are of the same order, n3, so even a slight increase in n

increases computational time significantly. Therefore, the

reduction of computing time is an important task in practical

cases. High performance computing techniques, including

parallel computing, are now being applied in many engineering

and scientific applications [11]. As a result, developing

efficient numerical algorithms specifically aimed at high

performance computers becomes a challenging issue.

In this paper, an efficient technique for multi layer elastic

crack problems using the domain decomposition method

(DDM) [12,13] is proposed. The DDM is used for independent

parallelisation with respect to the subregion BEM [14,15]. The

parallelisation matrices of all subregions are used to assemble

the final interface traction matrix. Unlike other methods which

solve the displacement and traction components on the

boundaries and interfaces at the same time, the distribution

of traction on the interfaces is obtained first from the interface

traction matrix. The displacement components can then be

calculated at the subregion level, from the equations associated

with the corresponding subregions. Initially, extra numerical

steps maybe needed to set up the final interface matrix

equation. However, our final matrix system is significantly

smaller than the final matrix systems obtained by other

methods. If the boundary conditions are changed, only the

equations for the subregions concerned need to be recalculated.

Therefore, Our method greatly reduces computational time,

and provides overall efficiency.

The effects of crack size, layer size, and the material

properties of the composite on the stress intensity factor are

studied using the proposed numerical technique to demonstrate

its accuracy and efficiency. The dual boundary element method

(DBEM) [16–18] is incorporated into the present method to

overcome the singularity in crack analysis. Further, in order to

improve accuracy in the stress intensity factor calculation,

discontinuous quarter point elements [19,20] are used to model

the near tip elements.

2. The multi region technique of boundary element method

Consider a two-dimensional body consisting of several

subregions. For any subregion that contains no cracks, the

displacement formulation of the boundary integral equation,

at a boundary point x 0, is written in the form (the body force

term is neglected)

cijðX
0ÞujðX

0ÞCTijðX
0;XÞujðXÞdGðXÞ Z

ð
G

UijðX
0;XÞtjðXÞdGðXÞ

(1)

where stands for the Cauchy principal value integral. uj(x) and

tj(x) are displacement and traction components in the j

direction, respectively. If the boundary is smooth, cij(x’)Z
1/2dij, where dij is the Kronecker delta. The kernel functions

Tij(x
0,x) and Uij(x

0,x) represent the Kelvin traction and

displacement fundamental solutions, respectively, at the

boundary point x. For any subregion containing cracks, the

DBEM is employed. The dual equations of the DBEM are

the displacement and the traction boundary integral equations.

The traction equation, which is applied on the crack surfaces, is

obtained by differentiation of the displacement Eq. (1), and

followed by the application of Hooke’s law. It is written as

1

2
tjðX

0ÞCniðX
0ÞSkijðX

0;XÞukðXÞdGðXÞ

Z niðX
0ÞDkijðX

0;XÞtkðXÞdGðXÞ (2)

where stands for the Hadamard principal value integral, ni

denotes the ith component of the unit outward normal to the

boundary, at a boundary point x 0. Skij(x
0, x) and Dkij(x

0, x) are

linear combinations of derivatives of Tij(x
0, x) and Uij(x

0, x),

respectively. The displacement integral Eq. (1) and the traction

integral Eq. (2) are the governing equations to be solved for the

displacement on the outer boundary and the relative

displacement on the crack faces.

We consider a three-subregion problem shown in Fig. 1. In

order to solve the integral equations numerically, the boundary

is discretised into a series of elements on which displacement

and traction components are written in terms of their values at

the nodal points. There are s1, s2 and s3 nodes placed on outer

boundaries of the subregions, m12 and m23 nodes on the

interface between subregions, and sc nodes on the crack face.

Let ui and ti denote the nodal displacement and traction vectors

on boundary Gi, respectively. Then, for the non-cracked

Fig. 1. A three subregion medium.
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