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Abstract

In this work, the implicit BEM formulation, initially developed in the context of a plasticity analysis is extended to incorporate damage

mechanics models. The algebraic equations adopted for the formulation are obtained either using displacement or traction equations, for the

boundary nodes, and strain equations for the internal nodes. The formulation is modified to incorporate a regularization technique based on a

non-local integral formulation. The consistent tangent operator has been obtained for local and non-local formulations. Arc-length strategy

developed for BEM formulations is adopted to analyse problems exhibiting the snap-back effects.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, the Boundary Element Method (BEM) is a

well-established numerical procedure for the analysis of

many practical engineering applications, offering, in

general, accurate and stable solutions. More recently,

formulations concerning the analysis of non-linear problems

are receiving particular attention from the BEM community.

In this context, some work has been published emphasizing

the use of the technique and demonstrating its accuracy and

applicability.

The analysis of non-linear problems by means of BEM

has been found since the end of seventies [1]. The non-linear

formulations used for quite a long time were all based on the

initial stress and strain procedures, where constant matrix

schemes were employed.

The consistent tangent operator, as proposed by Simo

and Taylor [2] for finite elements, has been introduced

into BEM non-linear formulations only recently [3–5].

Even more recently, Benallal et al. [6] have extended the

formulation to deal with localization problems in plasticity.

First, they have shown the accuracy of the implicit

formulation to compute very large deformation developed

over a very narrow and localized bandwidth, comparing the

results with solutions obtained by using an explicit model.

They have derived the complete implicit BEM formulation

for gradient plasticity to regularize the solution, therefore

avoiding the mesh dependency observed in the presence of

softening. Furthermore, the constant tangent operator

(CTO) concerning the combined equations has also been

derived. The results obtained using this formulation are

accurate and clearly the mesh dependency of the solution is

avoided.

Modelling the mechanical behaviour of brittle material

structures is nowadays an important and interesting theme

for research as illustrated in several books written on this

subject and also in many conferences recently held.

Concrete, often assumed as a brittle material, is widely

adopted in civil engineering construction, justifying there-

fore the interest in developing accurate numerical models in

this context. This material shows a particular behaviour

characterized by the formation of micro-cracks resulting in

the loss of strength and rigidity of the structural members.

This behaviour is well represented by models based on

Continuum Damage Mechanics [7,8]. In particular, to
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represent concrete behaviour it is interesting to mention the

pioneering works of Mazars [9] and La Borderie [10] and

others recently proposed [11].

So far, only limited applications of BEM to damage

mechanics have been reported in the literature [12,13].

Damage mechanics is a completely different problem to be

analysed in the BEM context. The damage parameter is no

longer constant; being the new value computed by the

model adopted to control the material degradation, making

the formulation more complex when compared with elasto-

plastic BEM schemes. For instance, using elastic prevision

as in plasticity is not a convenient choice; the rigidity could

be, at a certain stage, so deteriorated that elastic prevision

may lead to an inconveniently large number of iterations at

each time step. Furthermore, due to the loss of rigidity over

a rather narrow zone, responses may show snap-back

effects, therefore requiring proper numerical treatment to

trace the correct solution.

In this paper, the non-linear BEM formulation is

extended to solids governed by damage models, particularly

those proposed to deal with brittle materials. First, the

boundary algebraic equations are derived and then

transformed appropriately to give an incremental solution

scheme with a tangent predictor. These algebraic equations

can be obtained from singular or hyper-singular integral

representation, while the domain densities are all approxi-

mate using only internal nodes. A non-local BEM

formulation is also derived to regularize the numerical

solutions and to avoid mesh dependency. To derive this non-

local formulation, the concept of the non-local integral due

to Pijaudier-Cabot and Bazant [14] has been adopted. The

arc-length technique is also used together with BEM to

capture solutions showing snap-back effects. In the end,

three numerical examples are solved and discussed to

demonstrate the accuracy and stability of the developed

model particularly when dealing with this complex problem.

2. Continuum damage mechanics

Continuum Damage Mechanics (CDM) deals with the

load carrying capacity of solids without major cracks, but

where the material itself is damaged due to the presence of

microscopic defects such as micro-cracks and micro-voids.

CDM was originally conceived by Kachanov [15]. Then

later, Lemaitre [16], Lemaitre and Chaboche [17], Lemaitre

et al. [18], Leckie and Hayhurst [19], among others, made a

great effort to popularise it and to extend it to engineering

problems. Damage models, defined in the context of

Thermodynamic of irreversible processes, require the

definition of internal variables to represent the energy

dissipation processes. The internal variables are either

scalar-valued ones, when the material is assumed to be

isotropic (two variables can be assumed to represent the

phenomenon differently when in tension or compression), or

tensor-valued ones, when anisotropic behaviours are

represented.

In this work, we have chosen a particular isotropic

damage model to deal mainly with concrete solids proposed

by Comi and Perego [11]. In this model, the behaviours in

tension and in compression are differently represented by

the damage scalar variables Dt and Dc, respectively. As a

consequence, two surfaces, ft and fc, are defined in the stress

space to give the limit of the elastic zone.

For the isotropic model chosen in this work, the

following free energy potential is considered

j Z
1

2
f2m0ð1 KDtÞð1 KDcÞe : e

CK0ð1 KDtÞðtr
C 3Þ2 CK0ð1 KDcÞðtr

K 3Þ2g ð1Þ

where 3 and e are the strain tensor and its deviatoric part,

respectively, while m0 and K0 are the shear and bulk moduli.

The energy quantity given in Eq. (1), J, is clearly split

into two parts sharing contributions of positive and negative

parts of the volumetric strain, i.e. trC 3 and trK 3, which are,

respectively, given by

trC 3 Z htr 3i (2a)

trK 3 ZKhKtr 3i (2b)

where h$iZ$ if $O0 and h$iZ0 otherwise.

The stress tensor is derived from Eq. (1), resulting in

s Z
vj

v3
Z 2me CKC trC 3I CKK trK 3I (3)

being I the second-order identity tensor, mZm0(1KDt)(1K
Dc) is the current value of the shear modulus, while KCZ
K0(1KDt) and KKZK0(1KDc) are the current values of the

bulk modulus for trC 3R0 and trK 3!0, respectively.

Then, loading functions ft and fc can be defined as follows

ft Z J2 KatI
2
1 CbtrtðDtÞI1 Kktr

2
t ðDtÞð1 KaDcÞ (4a)

fc Z J2 CacI2
1 CbcrcðDcÞI1 Kkcr2

c ðDcÞ (4b)

where ri(Di), for iZt, c, is given by

riðDiÞ Z 1 K ½1 K ðse=s0Þi�ðD0i KDiÞ
2=D2

0i; for Di!D0i

(5a)

riðDiÞ Z ½1 K ððD0i KDiÞ
2=ð1 KD2

0iÞÞ
ci �0:75; for DiRD0i

(5b)

where D0i, are the values of damage at the plate, s0i, of the

stresses from the stress-strain curves sei of the elastic limit

values (all of them for iZt and iZc) while ctO1 and ccO1

are parameters defining the slope of the softening branch.
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